Home | Overview | Browser | Access | Login | Cookbook 
  VSA logo

Glossary of VSA attributes

This Glossary alphabetically lists all attributes used in the VSAv20181120 database(s) held in the VSA. If you would like to have more information about the schema tables please use the VSAv20181120 Schema Browser (other Browser versions).
A B C D E F G H I J K L M
N O P Q R S T U V W X Y Z

E

NameSchema TableDatabaseDescriptionTypeLengthUnitDefault ValueUnified Content Descriptor
E24umMag spitzer_smcSource SPITZER The SPITZER E24μm band magnitude. real 4 mag    
E3_6umMag spitzer_smcSource SPITZER The SPITZER E3.6μm band magnitude. real 4 mag    
E4_5umMag spitzer_smcSource SPITZER The SPITZER E4.5μm band magnitude. real 4 mag    
E5_8umMag spitzer_smcSource SPITZER The SPITZER E5.8μm band magnitude. real 4 mag    
E70umMag spitzer_smcSource SPITZER The SPITZER E70μm band magnitude. real 4 mag    
E8_0umMag spitzer_smcSource SPITZER The SPITZER E8.0μm band magnitude. real 4 mag    
e_Ap35mag_I denisDR3Source DENIS Error in I band mag from 3.5" aperture float 8 mag    
e_Ap35mag_J denisDR3Source DENIS Error in J band mag from 3.5" aperture float 8 mag    
e_Ap35mag_K denisDR3Source DENIS Error in K band mag from 3.5" aperture float 8 mag    
e_Ap45mag_I denisDR3Source DENIS Error in I band mag from 4.5" aperture float 8 mag    
e_Ap45mag_J denisDR3Source DENIS Error in J band mag from 4.5" aperture float 8 mag    
e_Ap45mag_K denisDR3Source DENIS Error in K band mag from 4.5" aperture float 8 mag    
e_Ap55mag_I denisDR3Source DENIS Error in I band mag from 5.5" aperture float 8 mag    
e_Ap55mag_J denisDR3Source DENIS Error in J band mag from 5.5" aperture float 8 mag    
e_Ap55mag_K denisDR3Source DENIS Error in K band mag from 5.5" aperture float 8 mag    
e_Apc15mag_I denisDR3Source DENIS I band mag error in 1.5" corr. aperture float 8 mag    
e_Apc15mag_J denisDR3Source DENIS J band mag error in 1.5" corr. aperture float 8 mag    
e_Apc15mag_K denisDR3Source DENIS K band mag error in 1.5" corr. aperture float 8 mag    
e_Apc25mag_I denisDR3Source DENIS I band mag error in 2.5" corr. aperture float 8 mag    
e_Apc25mag_J denisDR3Source DENIS J band mag error in 2.5" corr. aperture float 8 mag    
e_Apc25mag_K denisDR3Source DENIS K band mag error in 2.5" corr. aperture float 8 mag    
e_Apc35mag_I denisDR3Source DENIS I band mag error in 3.5" corr. aperture float 8 mag    
e_Apc35mag_J denisDR3Source DENIS J band mag error in 3.5" corr. aperture float 8 mag    
e_Apc35mag_K denisDR3Source DENIS K band mag error in 3.5" corr. aperture float 8 mag    
e_b_v hipparcos_new_reduction GAIADR1 Formal error on B-V colour index float 8 mag   em.opt;phot.colour;stat.error
e_BbMag combo17CDFSSource COMBO17 mean error (1-sigma) of BbMag real 4 mag    
e_BF_D combo17CDFSSource COMBO17 mean error (1-sigma) of BF_D float 8      
e_BF_F combo17CDFSSource COMBO17 mean error (1-sigma) of BF_F float 8      
e_BF_S combo17CDFSSource COMBO17 mean error (1-sigma) of BF_S float 8      
e_BjMag combo17CDFSSource COMBO17 mean error (1-sigma) of BjMag real 4 mag    
e_Bmag mcps_lmcSource, mcps_smcSource MCPS The 1σ error in Bmag real 4      
e_bp_min_rp_percentile_lower gaia_source GAIADR2 Lower uncertainty on e_bp_min_rp_val real 4 mag    
e_bp_min_rp_percentile_Upper gaia_source GAIADR2 Upper uncertainty on e_bp_min_rp_val real 4 mag    
e_bp_min_rp_val gaia_source GAIADR2 Line-of-sight reddening E(BP-RP) real 4 mag    
e_bt_mag tycho2 GAIADR1 Standard error on BT real 4 mag   stat.error
e_de_deg tycho2 GAIADR1 Standard error of observed Tycho2 Dec float 8 milliarcsec   stat.error
e_de_m_deg tycho2 GAIADR1 Standard error of mean Tycho2 Dec float 8 milliarcsec   stat.error
e_de_rad hipparcos_new_reduction GAIADR1 Formal error on de_rad float 8 milliarcsec   pos.eq.dec;stat.error
e_DEcs nvssSource NVSS Mean error on Dec real 4 arcsec   stat.error
e_Fitmag_I denisDR3Source DENIS Magnitude error in I band from PSF fit float 8 mag    
e_Fitmag_J denisDR3Source DENIS Magnitude error in J band from PSF fit float 8 mag    
e_Fitmag_K denisDR3Source DENIS Magnitude error in K band from PSF fit float 8 mag    
e_gsMag combo17CDFSSource COMBO17 mean error (1-sigma) of gsMag real 4 mag    
e_Hmag mcps_lmcSource, mcps_smcSource MCPS The 1σ error in Hmag real 4      
e_hp_mag hipparcos_new_reduction GAIADR1 Error on mean Hipparcos magnitude float 8 mag   em.opt.V;phot.mag;stat.error
e_IF_D combo17CDFSSource COMBO17 mean error (1-sigma) of IF_D float 8      
e_Imag mcps_lmcSource, mcps_smcSource MCPS The 1σ error in Imag magnitude real 4      
e_Jmag mcps_lmcSource, mcps_smcSource MCPS The 1σ error in Jmag real 4      
e_Kmag mcps_lmcSource, mcps_smcSource MCPS The 1σ error in Kmag real 4      
e_majAxis nvssSource NVSS Mean error on majAxis real 4 arcsec   stat.error
e_MC_z combo17CDFSSource COMBO17 mean error (1-sigma) of MC_z real 4      
e_MC_z2 combo17CDFSSource COMBO17 mean error (1-sigma) of MC_z2 real 4      
e_minAxis nvssSource NVSS Mean error on minAxis real 4 arcsec   stat.error
e_PA nvssSource NVSS Mean error on PA real 4 degrees   stat.error
e_plx hipparcos_new_reduction GAIADR1 Formal error on parallax float 8 milliarcsec   pos.parallax;stat.error
e_pm_de hipparcos_new_reduction GAIADR1 Formal error on pm_de float 8 milliarcsec/year   pos.eq.dec;pos.pm;stat.error
e_pm_de tycho2 GAIADR1 Standard error of Dec proper motion real 4 milliarcsec/year   stat.error
e_pm_ra hipparcos_new_reduction GAIADR1 Formal error on pm_ra float 8 milliarcsec/year   pos.eq.ra;pos.pm;stat.error
e_pm_ra tycho2 GAIADR1 Standard error in RA*cos(Dec) of RA proper motion real 4 milliarcsec/year   stat.error
e_polFlux nvssSource NVSS Mean error on polFlux real 4 mJy   stat.error
e_polPA nvssSource NVSS Mean error on polPA real 4 mJy   stat.error
e_ra_deg tycho2 GAIADR1 Standard error in RA*cos(Dec) of observed Tycho2 RA float 8 milliarcsec   stat.error
e_ra_m_deg tycho2 GAIADR1 Standard error in RA*cos(Dec) of mean Tycho2 RA float 8 milliarcsec   stat.error
e_ra_rad hipparcos_new_reduction GAIADR1 Formal error on ra_rad float 8 milliarcsec   pos.eq.ra;stat.error
e_RAs nvssSource NVSS Mean error on RA real 4 s   stat.error
e_RF_D combo17CDFSSource COMBO17 mean error (1-sigma) of RF_D float 8      
e_RF_E combo17CDFSSource COMBO17 mean error (1-sigma) of RF_E float 8      
e_RF_F combo17CDFSSource COMBO17 mean error (1-sigma) of RF_F float 8      
e_RF_G combo17CDFSSource COMBO17 mean error (1-sigma) of RF_G float 8      
e_RF_S combo17CDFSSource COMBO17 mean error (1-sigma) of RF_S float 8      
e_Rmag combo17CDFSSource COMBO17 mean error (1-sigma) of Rmag real 4 mag    
e_rsMag combo17CDFSSource COMBO17 mean error (1-sigma) of rsMag real 4 mag    
e_S14 nvssSource NVSS Mean error on S14 real 4 mJy   stat.error
e_S145Mag combo17CDFSSource COMBO17 mean error (1-sigma) of S145Mag real 4 mag    
e_S280Mag combo17CDFSSource COMBO17 mean error (1-sigma) of S280Mag real 4 mag    
e_score twomass_xsc TWOMASS extended score: 1(extended) < e_score < 2(point-like). real 4     meta.code
e_UbMag combo17CDFSSource COMBO17 mean error (1-sigma) of UbMag real 4 mag    
e_UF_F combo17CDFSSource COMBO17 mean error (1-sigma) of UF_F float 8      
e_UF_G combo17CDFSSource COMBO17 mean error (1-sigma) of UF_G float 8      
e_UF_S combo17CDFSSource COMBO17 mean error (1-sigma) of UF_S float 8      
e_UjMag combo17CDFSSource COMBO17 mean error (1-sigma) of UjMag real 4 mag    
e_Umag mcps_lmcSource, mcps_smcSource MCPS The 1σ error in Umag real 4      
e_usMag combo17CDFSSource COMBO17 mean error (1-sigma) of usMag real 4 mag    
e_VbMag combo17CDFSSource COMBO17 mean error (1-sigma) of VbMag real 4 mag    
e_VF_D combo17CDFSSource COMBO17 mean error (1-sigma) of VF_D float 8      
e_VjMag combo17CDFSSource COMBO17 mean error (1-sigma) of VjMag real 4 mag    
e_Vmag mcps_lmcSource, mcps_smcSource MCPS The 1σ error in Vmag real 4      
e_vt_mag tycho2 GAIADR1 Standard error on VT real 4 mag   stat.error
e_W420F_E combo17CDFSSource COMBO17 mean error (1-sigma) of W420F_E float 8      
e_W462F_E combo17CDFSSource COMBO17 mean error (1-sigma) of W462F_E float 8      
e_W485F_D combo17CDFSSource COMBO17 mean error (1-sigma) of W485F_D float 8      
e_W518F_E combo17CDFSSource COMBO17 mean error (1-sigma) of W518F_E float 8      
e_W571F_D combo17CDFSSource COMBO17 mean error (1-sigma) of W571F_D float 8      
e_W571F_E combo17CDFSSource COMBO17 mean error (1-sigma) of W571F_E float 8      
e_W571F_S combo17CDFSSource COMBO17 mean error (1-sigma) of W571F_S float 8      
e_W604F_E combo17CDFSSource COMBO17 mean error (1-sigma) of W604F_E float 8      
e_W646F_D combo17CDFSSource COMBO17 mean error (1-sigma) of W646F_D float 8      
e_W696F_E combo17CDFSSource COMBO17 mean error (1-sigma) of W696F_E float 8      
e_W753F_E combo17CDFSSource COMBO17 mean error (1-sigma) of W753F_E float 8      
e_W815F_E combo17CDFSSource COMBO17 mean error (1-sigma) of W815F_E float 8      
e_W815F_G combo17CDFSSource COMBO17 mean error (1-sigma) of W815F_G float 8      
e_W815F_S combo17CDFSSource COMBO17 mean error (1-sigma) of W815F_S float 8      
e_W856F_D combo17CDFSSource COMBO17 mean error (1-sigma) of W856F_D float 8      
e_W914F_D combo17CDFSSource COMBO17 mean error (1-sigma) of W914F_D float 8      
e_W914F_E combo17CDFSSource COMBO17 mean error (1-sigma) of W914F_E float 8      
eBmag_APASSDR9 ravedr5Source RAVE error B magnitude from APASSDR9 real 4 mag   stat.error;phot.mag;em.opt.B
ebmvMed MultiframeDetector VHSDR1 Median modified E(B-V) {catalogue extension keyword:  EBMVMED} real 4   -0.9999995e9  
ebmvMed MultiframeDetector VHSDR2 Median modified E(B-V) {catalogue extension keyword:  EBMVMED} real 4   -0.9999995e9  
ebmvMed MultiframeDetector VHSDR3 Median modified E(B-V) {catalogue extension keyword:  EBMVMED} real 4   -0.9999995e9  
ebmvMed MultiframeDetector VHSDR4 Median modified E(B-V) {catalogue extension keyword:  EBMVMED} real 4   -0.9999995e9  
ebmvMed MultiframeDetector VHSv20120926 Median modified E(B-V) {catalogue extension keyword:  EBMVMED} real 4   -0.9999995e9  
ebmvMed MultiframeDetector VHSv20130417 Median modified E(B-V) {catalogue extension keyword:  EBMVMED} real 4   -0.9999995e9  
ebmvMed MultiframeDetector VHSv20140409 Median modified E(B-V) {catalogue extension keyword:  EBMVMED} real 4   -0.9999995e9  
ebmvMed MultiframeDetector VHSv20150108 Median modified E(B-V) {catalogue extension keyword:  EBMVMED} real 4   -0.9999995e9  
ebmvMed MultiframeDetector VHSv20160114 Median modified E(B-V) {catalogue extension keyword:  EBMVMED} real 4   -0.9999995e9  
ebmvMed MultiframeDetector VHSv20160507 Median modified E(B-V) {catalogue extension keyword:  EBMVMED} real 4   -0.9999995e9  
ebmvMed MultiframeDetector VHSv20170630 Median modified E(B-V) {catalogue extension keyword:  EBMVMED} real 4   -0.9999995e9  
ebmvMed MultiframeDetector VHSv20171207 Median modified E(B-V) {catalogue extension keyword:  EBMVMED} real 4   -0.9999995e9  
ebmvMed MultiframeDetector VHSv20180419 Median modified E(B-V) {catalogue extension keyword:  EBMVMED} real 4   -0.9999995e9  
ebmvMed MultiframeDetector VIDEODR2 Median modified E(B-V) {catalogue extension keyword:  EBMVMED} real 4   -0.9999995e9  
ebmvMed MultiframeDetector VIDEODR3 Median modified E(B-V) {catalogue extension keyword:  EBMVMED} real 4   -0.9999995e9  
ebmvMed MultiframeDetector VIDEODR4 Median modified E(B-V) {catalogue extension keyword:  EBMVMED} real 4   -0.9999995e9  
ebmvMed MultiframeDetector VIDEODR5 Median modified E(B-V) {catalogue extension keyword:  EBMVMED} real 4   -0.9999995e9  
ebmvMed MultiframeDetector VIDEOv20111208 Median modified E(B-V) {catalogue extension keyword:  EBMVMED} real 4   -0.9999995e9  
ebmvMed MultiframeDetector VIKINGDR2 Median modified E(B-V) {catalogue extension keyword:  EBMVMED} real 4   -0.9999995e9  
ebmvMed MultiframeDetector VIKINGDR3 Median modified E(B-V) {catalogue extension keyword:  EBMVMED} real 4   -0.9999995e9  
ebmvMed MultiframeDetector VIKINGDR4 Median modified E(B-V) {catalogue extension keyword:  EBMVMED} real 4   -0.9999995e9  
ebmvMed MultiframeDetector VIKINGv20110714 Median modified E(B-V) {catalogue extension keyword:  EBMVMED} real 4   -0.9999995e9  
ebmvMed MultiframeDetector VIKINGv20111019 Median modified E(B-V) {catalogue extension keyword:  EBMVMED} real 4   -0.9999995e9  
ebmvMed MultiframeDetector VIKINGv20130417 Median modified E(B-V) {catalogue extension keyword:  EBMVMED} real 4   -0.9999995e9  
ebmvMed MultiframeDetector VIKINGv20140402 Median modified E(B-V) {catalogue extension keyword:  EBMVMED} real 4   -0.9999995e9  
ebmvMed MultiframeDetector VIKINGv20150421 Median modified E(B-V) {catalogue extension keyword:  EBMVMED} real 4   -0.9999995e9  
ebmvMed MultiframeDetector VIKINGv20151230 Median modified E(B-V) {catalogue extension keyword:  EBMVMED} real 4   -0.9999995e9  
ebmvMed MultiframeDetector VIKINGv20160406 Median modified E(B-V) {catalogue extension keyword:  EBMVMED} real 4   -0.9999995e9  
ebmvMed MultiframeDetector VIKINGv20161202 Median modified E(B-V) {catalogue extension keyword:  EBMVMED} real 4   -0.9999995e9  
ebmvMed MultiframeDetector VIKINGv20170715 Median modified E(B-V) {catalogue extension keyword:  EBMVMED} real 4   -0.9999995e9  
ebmvMed MultiframeDetector VIKINGv20181012 Median modified E(B-V) {catalogue extension keyword:  EBMVMED} real 4   -0.9999995e9  
ebmvMed MultiframeDetector VMCDR1 Median modified E(B-V) {catalogue extension keyword:  EBMVMED} real 4   -0.9999995e9  
ebmvMed MultiframeDetector VMCDR2 Median modified E(B-V) {catalogue extension keyword:  EBMVMED} real 4   -0.9999995e9  
ebmvMed MultiframeDetector VMCDR3 Median modified E(B-V) {catalogue extension keyword:  EBMVMED} real 4   -0.9999995e9  
ebmvMed MultiframeDetector VMCDR4 Median modified E(B-V) {catalogue extension keyword:  EBMVMED} real 4   -0.9999995e9  
ebmvMed MultiframeDetector VMCv20110816 Median modified E(B-V) {catalogue extension keyword:  EBMVMED} real 4   -0.9999995e9  
ebmvMed MultiframeDetector VMCv20110909 Median modified E(B-V) {catalogue extension keyword:  EBMVMED} real 4   -0.9999995e9  
ebmvMed MultiframeDetector VMCv20120126 Median modified E(B-V) {catalogue extension keyword:  EBMVMED} real 4   -0.9999995e9  
ebmvMed MultiframeDetector VMCv20121128 Median modified E(B-V) {catalogue extension keyword:  EBMVMED} real 4   -0.9999995e9  
ebmvMed MultiframeDetector VMCv20130304 Median modified E(B-V) {catalogue extension keyword:  EBMVMED} real 4   -0.9999995e9  
ebmvMed MultiframeDetector VMCv20130805 Median modified E(B-V) {catalogue extension keyword:  EBMVMED} real 4   -0.9999995e9  
ebmvMed MultiframeDetector VMCv20140428 Median modified E(B-V) {catalogue extension keyword:  EBMVMED} real 4   -0.9999995e9  
ebmvMed MultiframeDetector VMCv20140903 Median modified E(B-V) {catalogue extension keyword:  EBMVMED} real 4   -0.9999995e9  
ebmvMed MultiframeDetector VMCv20150309 Median modified E(B-V) {catalogue extension keyword:  EBMVMED} real 4   -0.9999995e9  
ebmvMed MultiframeDetector VMCv20151218 Median modified E(B-V) {catalogue extension keyword:  EBMVMED} real 4   -0.9999995e9  
ebmvMed MultiframeDetector VMCv20160311 Median modified E(B-V) {catalogue extension keyword:  EBMVMED} real 4   -0.9999995e9  
ebmvMed MultiframeDetector VMCv20160822 Median modified E(B-V) {catalogue extension keyword:  EBMVMED} real 4   -0.9999995e9  
ebmvMed MultiframeDetector VMCv20170109 Median modified E(B-V) {catalogue extension keyword:  EBMVMED} real 4   -0.9999995e9  
ebmvMed MultiframeDetector VMCv20170411 Median modified E(B-V) {catalogue extension keyword:  EBMVMED} real 4   -0.9999995e9  
ebmvMed MultiframeDetector VMCv20171101 Median modified E(B-V) {catalogue extension keyword:  EBMVMED} real 4   -0.9999995e9  
ebmvMed MultiframeDetector VMCv20180702 Median modified E(B-V) {catalogue extension keyword:  EBMVMED} real 4   -0.9999995e9  
ebmvMed MultiframeDetector VMCv20181120 Median modified E(B-V) {catalogue extension keyword:  EBMVMED} real 4   -0.9999995e9  
ebmvMed MultiframeDetector VVVDR4 Median modified E(B-V) {catalogue extension keyword:  EBMVMED} real 4   -0.9999995e9  
ebmvMed ultravistaMultiframeDetector, vhsMultiframeDetector, videoMultiframeDetector, vikingMultiframeDetector, vmcMultiframeDetector, vvvMultiframeDetector VSAQC Median modified E(B-V) real 4   -0.9999995e9  
eBTmag_TYCHO2 ravedr5Source RAVE Error of BT magnitude from TYCHO2 real 4 mag   stat.error;phot.mag;em.opt.B
eBV vhsSource VHSDR1 The galactic dust extinction value measured from the Schlegel, Finkbeiner & Davis (1998) maps. This uses the correction given in Bonifacio, Monai & Beers (2000). This correction reduces the extinction value in regions of high extinction (E(B-V)>0.1) real 4   -0.9999995e9  
eBV vhsSource VHSDR2 The galactic dust extinction value measured from the Schlegel, Finkbeiner & Davis (1998) maps. This uses the correction given in Bonifacio, Monai & Beers (2000). This correction reduces the extinction value in regions of high extinction (E(B-V)>0.1) real 4   -0.9999995e9  
eBV vhsSource VHSDR3 The galactic dust extinction value measured from the Schlegel, Finkbeiner & Davis (1998) maps. This uses the correction given in Bonifacio, Monai & Beers (2000). This correction reduces the extinction value in regions of high extinction (E(B-V)>0.1) real 4   -0.9999995e9 phys.absorption.gal
eBV vhsSource VHSDR4 The galactic dust extinction value measured from the Schlegel, Finkbeiner & Davis (1998) maps. This uses the correction given in Bonifacio, Monai & Beers (2000). This correction reduces the extinction value in regions of high extinction (E(B-V)>0.1) real 4   -0.9999995e9 phys.absorption.gal
eBV vhsSource VHSv20120926 The galactic dust extinction value measured from the Schlegel, Finkbeiner & Davis (1998) maps. This uses the correction given in Bonifacio, Monai & Beers (2000). This correction reduces the extinction value in regions of high extinction (E(B-V)>0.1) real 4   -0.9999995e9 phys.absorption.gal
eBV vhsSource VHSv20130417 The galactic dust extinction value measured from the Schlegel, Finkbeiner & Davis (1998) maps. This uses the correction given in Bonifacio, Monai & Beers (2000). This correction reduces the extinction value in regions of high extinction (E(B-V)>0.1) real 4   -0.9999995e9 phys.absorption.gal
eBV vhsSource VHSv20140409 The galactic dust extinction value measured from the Schlegel, Finkbeiner & Davis (1998) maps. This uses the correction given in Bonifacio, Monai & Beers (2000). This correction reduces the extinction value in regions of high extinction (E(B-V)>0.1) real 4   -0.9999995e9 phys.absorption.gal
eBV vhsSource VHSv20150108 The galactic dust extinction value measured from the Schlegel, Finkbeiner & Davis (1998) maps. This uses the correction given in Bonifacio, Monai & Beers (2000). This correction reduces the extinction value in regions of high extinction (E(B-V)>0.1) real 4   -0.9999995e9 phys.absorption.gal
eBV vhsSource VHSv20160114 The galactic dust extinction value measured from the Schlegel, Finkbeiner & Davis (1998) maps. This uses the correction given in Bonifacio, Monai & Beers (2000). This correction reduces the extinction value in regions of high extinction (E(B-V)>0.1) real 4   -0.9999995e9 phys.absorption.gal
eBV vhsSource VHSv20160507 The galactic dust extinction value measured from the Schlegel, Finkbeiner & Davis (1998) maps. This uses the correction given in Bonifacio, Monai & Beers (2000). This correction reduces the extinction value in regions of high extinction (E(B-V)>0.1) real 4   -0.9999995e9 phys.absorption.gal
eBV vhsSource VHSv20170630 The galactic dust extinction value measured from the Schlegel, Finkbeiner & Davis (1998) maps. This uses the correction given in Bonifacio, Monai & Beers (2000). This correction reduces the extinction value in regions of high extinction (E(B-V)>0.1) real 4   -0.9999995e9 phys.absorption.gal
eBV vhsSource VHSv20171207 The galactic dust extinction value measured from the Schlegel, Finkbeiner & Davis (1998) maps. This uses the correction given in Bonifacio, Monai & Beers (2000). This correction reduces the extinction value in regions of high extinction (E(B-V)>0.1) real 4   -0.9999995e9 phys.absorption.gal
eBV vhsSource VHSv20180419 The galactic dust extinction value measured from the Schlegel, Finkbeiner & Davis (1998) maps. This uses the correction given in Bonifacio, Monai & Beers (2000). This correction reduces the extinction value in regions of high extinction (E(B-V)>0.1) real 4   -0.9999995e9 phys.absorption.gal
eBV videoSource VIDEODR2 The galactic dust extinction value measured from the Schlegel, Finkbeiner & Davis (1998) maps. This uses the correction given in Bonifacio, Monai & Beers (2000). This correction reduces the extinction value in regions of high extinction (E(B-V)>0.1) real 4   -0.9999995e9  
eBV videoSource VIDEODR3 The galactic dust extinction value measured from the Schlegel, Finkbeiner & Davis (1998) maps. This uses the correction given in Bonifacio, Monai & Beers (2000). This correction reduces the extinction value in regions of high extinction (E(B-V)>0.1) real 4   -0.9999995e9 phys.absorption.gal
eBV videoSource VIDEODR4 The galactic dust extinction value measured from the Schlegel, Finkbeiner & Davis (1998) maps. This uses the correction given in Bonifacio, Monai & Beers (2000). This correction reduces the extinction value in regions of high extinction (E(B-V)>0.1) real 4   -0.9999995e9 phys.absorption.gal
eBV videoSource VIDEODR5 The galactic dust extinction value measured from the Schlegel, Finkbeiner & Davis (1998) maps. This uses the correction given in Bonifacio, Monai & Beers (2000). This correction reduces the extinction value in regions of high extinction (E(B-V)>0.1) real 4   -0.9999995e9 phys.absorption.gal
eBV videoSource VIDEOv20100513 The galactic dust extinction value measured from the Schlegel, Finkbeiner & Davis (1998) maps. This uses the correction given in Bonifacio, Monai & Beers (2000). This correction reduces the extinction value in regions of high extinction (E(B-V)>0.1) real 4   -0.9999995e9  
eBV videoSource VIDEOv20111208 The galactic dust extinction value measured from the Schlegel, Finkbeiner & Davis (1998) maps. This uses the correction given in Bonifacio, Monai & Beers (2000). This correction reduces the extinction value in regions of high extinction (E(B-V)>0.1) real 4   -0.9999995e9  
eBV vikingSource VIKINGDR2 The galactic dust extinction value measured from the Schlegel, Finkbeiner & Davis (1998) maps. This uses the correction given in Bonifacio, Monai & Beers (2000). This correction reduces the extinction value in regions of high extinction (E(B-V)>0.1) real 4   -0.9999995e9  
eBV vikingSource VIKINGDR3 The galactic dust extinction value measured from the Schlegel, Finkbeiner & Davis (1998) maps. This uses the correction given in Bonifacio, Monai & Beers (2000). This correction reduces the extinction value in regions of high extinction (E(B-V)>0.1) real 4   -0.9999995e9 phys.absorption.gal
eBV vikingSource VIKINGDR4 The galactic dust extinction value measured from the Schlegel, Finkbeiner & Davis (1998) maps. This uses the correction given in Bonifacio, Monai & Beers (2000). This correction reduces the extinction value in regions of high extinction (E(B-V)>0.1) real 4   -0.9999995e9 phys.absorption.gal
eBV vikingSource VIKINGv20110714 The galactic dust extinction value measured from the Schlegel, Finkbeiner & Davis (1998) maps. This uses the correction given in Bonifacio, Monai & Beers (2000). This correction reduces the extinction value in regions of high extinction (E(B-V)>0.1) real 4   -0.9999995e9  
eBV vikingSource VIKINGv20111019 The galactic dust extinction value measured from the Schlegel, Finkbeiner & Davis (1998) maps. This uses the correction given in Bonifacio, Monai & Beers (2000). This correction reduces the extinction value in regions of high extinction (E(B-V)>0.1) real 4   -0.9999995e9  
eBV vikingSource VIKINGv20130417 The galactic dust extinction value measured from the Schlegel, Finkbeiner & Davis (1998) maps. This uses the correction given in Bonifacio, Monai & Beers (2000). This correction reduces the extinction value in regions of high extinction (E(B-V)>0.1) real 4   -0.9999995e9 phys.absorption.gal
eBV vikingSource VIKINGv20140402 The galactic dust extinction value measured from the Schlegel, Finkbeiner & Davis (1998) maps. This uses the correction given in Bonifacio, Monai & Beers (2000). This correction reduces the extinction value in regions of high extinction (E(B-V)>0.1) real 4   -0.9999995e9 phys.absorption.gal
eBV vikingSource VIKINGv20150421 The galactic dust extinction value measured from the Schlegel, Finkbeiner & Davis (1998) maps. This uses the correction given in Bonifacio, Monai & Beers (2000). This correction reduces the extinction value in regions of high extinction (E(B-V)>0.1) real 4   -0.9999995e9 phys.absorption.gal
eBV vikingSource VIKINGv20151230 The galactic dust extinction value measured from the Schlegel, Finkbeiner & Davis (1998) maps. This uses the correction given in Bonifacio, Monai & Beers (2000). This correction reduces the extinction value in regions of high extinction (E(B-V)>0.1) real 4   -0.9999995e9 phys.absorption.gal
eBV vikingSource VIKINGv20160406 The galactic dust extinction value measured from the Schlegel, Finkbeiner & Davis (1998) maps. This uses the correction given in Bonifacio, Monai & Beers (2000). This correction reduces the extinction value in regions of high extinction (E(B-V)>0.1) real 4   -0.9999995e9 phys.absorption.gal
eBV vikingSource VIKINGv20161202 The galactic dust extinction value measured from the Schlegel, Finkbeiner & Davis (1998) maps. This uses the correction given in Bonifacio, Monai & Beers (2000). This correction reduces the extinction value in regions of high extinction (E(B-V)>0.1) real 4   -0.9999995e9 phys.absorption.gal
eBV vikingSource VIKINGv20170715 The galactic dust extinction value measured from the Schlegel, Finkbeiner & Davis (1998) maps. This uses the correction given in Bonifacio, Monai & Beers (2000). This correction reduces the extinction value in regions of high extinction (E(B-V)>0.1) real 4   -0.9999995e9 phys.absorption.gal
eBV vikingSource VIKINGv20181012 The galactic dust extinction value measured from the Schlegel, Finkbeiner & Davis (1998) maps. This uses the correction given in Bonifacio, Monai & Beers (2000). This correction reduces the extinction value in regions of high extinction (E(B-V)>0.1) real 4   -0.9999995e9 phys.absorption.gal
eBV vikingZY_selJ_SourceRemeasurement VIKINGZYSELJv20160909 The galactic dust extinction value measured from the Schlegel, Finkbeiner & Davis (1998) maps. This uses the correction given in Bonifacio, Monai & Beers (2000). This correction reduces the extinction value in regions of high extinction (E(B-V)>0.1) real 4   -0.9999995e9 phys.absorption.gal
eBV vikingZY_selJ_SourceRemeasurement VIKINGZYSELJv20170124 The galactic dust extinction value measured from the Schlegel, Finkbeiner & Davis (1998) maps. This uses the correction given in Bonifacio, Monai & Beers (2000). This correction reduces the extinction value in regions of high extinction (E(B-V)>0.1) real 4   -0.9999995e9 phys.absorption.gal
ebv twompzPhotoz TWOMPZ The Galactic dust extinction value measured from the Schlegel, Finkbeiner & Davis (1998) maps. {image primary HDU keyword: EBV} real 4 mag -0.9999995e9 phys.absorption.gal
ebv wiseScosPhotoz, wiseScosPhotozRejects, wiseScosSvm WISExSCOSPZ The Galactic dust extinction value measured from the Schlegel, Finkbeiner & Davis (1998) maps. {image primary HDU keyword: Ebmv} real 4 mag -0.9999995e9 phys.absorption.gal
ECCENT grs_ngpSource, grs_ranSource, grs_sgpSource TWODFGRS Eccentricity (e) e*200 = 200*(((sxx-syy)**2 + 4sxy**2)**0.5)/(sxx + syy) real 4      
ecl_lat gaia_source GAIADR2 Ecliptic latitude float 8 degrees   pos.ecliptic.lat
ecl_lat gaia_source, tgas_source GAIADR1 Ecliptic latitude float 8 degrees   pos.ecliptic.lat
ecl_lon gaia_source GAIADR2 Ecliptic longitude float 8 degrees   pos.ecliptic.lon
ecl_lon gaia_source, tgas_source GAIADR1 Ecliptic longitude float 8 degrees   pos.ecliptic.lon
ecliptic_lat igsl_source GAIADR1 Ecliptic latitude real 4 degrees   pos.ecliptic.lat
ecliptic_lon igsl_source GAIADR1 Ecliptic longitude real 4 degrees   pos.ecliptic.lon
edepm vvvParallaxCatalogue, vvvProperMotionCatalogue VVVDR4 Error on Dec component of proper motion {catalogue TType keyword: edepm} float 8 mas/yr -999999500.0  
edistance ravedr5Source RAVE Error of spectrophotometric Distance (Binney et al. 2014) real 4 pc   pos.distance
eDistanceModulus_Binney ravedr5Source RAVE Error of distance Modulus from Binney et al. 2014 real 4 mag   phot.mag.distMod
eFlag rosat_bsc, rosat_fsc ROSAT source extended beyond SASS extraction radius varchar 1     meta.code
egpmag_APASSDR9 ravedr5Source RAVE g' magnitude from APASSDR9 real 4 mag   stat.error;phot.mag;em.opt
eHKs vvvBulge3DExtinctVals EXTINCT E(H-Ks) calculated from the stellar population model at distance r real 4 mag -0.9999995e9 phys.absorption.gal
eHKsErr vvvBulge3DExtinctVals EXTINCT Error on E(H-Ks) calculated from the stellar population model at distance r real 4 mag -0.9999995e9 star.error
eHmag vvvParallaxCatalogue, vvvProperMotionCatalogue VVVDR4 Error on VVV DR4 H photometry. {catalogue TType keyword: eHmag} real 4 mag -999999500.0  
eHmag_2MASS ravedr5Source RAVE error 2MASS H magnitude real 4 mag   stat.error;phot.mag;em.IR.H
eHRV ravedr5Source RAVE Error of Heliocentric radial velocity stat.error real 4 km/s   stat.error;spect.dopplerVeloc;pos.heliocentric
eImag_DENIS ravedr5Source RAVE error DENIS I magnitude real 4 mag   stat.error;phot.mag;em.opt.I
eipmag_APASSDR9 ravedr5Source RAVE i' magnitude from APASSDR9 real 4 mag   stat.error;phot.mag;em.opt
eJ vvvPsfDaophotJKsSource VVVDR4 The fitted (4th-degree polynomial) adjusted Median Absolute Deviation (MAD; so that 1-MAD = 1-sigma in the traditional sense) per J bin of the simulations, of the Jin-Jout (Kin - Kout) difference {catalogue TType keyword: ej} real 4   -0.9999995e9  
eJKs vvvBulge3DExtinctVals EXTINCT E(J-Ks) calculated from the stellar population model at distance r real 4 mag -0.9999995e9 phys.absorption.gal
eJKs vvvPsfDaophotJKsSource VVVDR4 The galactic dust extinction value measured from Gonzalez et al. (201?) to the. {catalogue TType keyword: ejk} real 4   -0.9999995e9 phys.absorption.gal
eJKsErr vvvBulge3DExtinctVals EXTINCT Error on E(J-Ks) calculated from the stellar population model at distance r real 4 mag -0.9999995e9 star.error
eJKsErr vvvPsfDaophotJKsSource VVVDR4 The error on the galactic dust extinction value measured from Gonzalez et al. (201?). {catalogue TType keyword: ejk_err} real 4   -0.9999995e9 stat.error;phys.absorption.gal
eJmag vvvParallaxCatalogue, vvvProperMotionCatalogue VVVDR4 Error on VVV DR4 J photometry. {catalogue TType keyword: eJmag} real 4 mag -999999500.0  
eJmag_2MASS ravedr5Source RAVE error 2MASS J magnitude real 4 mag   stat.error;phot.mag;em.IR.J
eJmag_DENIS ravedr5Source RAVE error DENIS J magnitude real 4 mag   stat.error;phot.mag;em.IR.J
eKmag_2MASS ravedr5Source RAVE error 2MASS K magnitude real 4 mag   stat.error;phot.mag;em.IR.K
eKmag_DENIS ravedr5Source RAVE error DENIS K magnitude real 4 mag   stat.error;phot.mag;em.IR.K
eKs vvvPsfDaophotJKsSource VVVDR4 The fitted (4th-degree polynomial) adjusted Median Absolute Deviation (MAD; so that 1-MAD = 1-sigma in the traditional sense) per Ks bin of the simulations, of the Jin-Jout (Kin - Kout) difference {catalogue TType keyword: ek} real 4   -0.9999995e9  
elat allwise_sc2 WISE Ecliptic latitude computed from the non-moving source fit equatorial position. CAUTION: This coordinate should not be used as an astrometric reference. float 8 deg    
ell vhsDetection VHSDR2 1-b/a, where a/b=semi-major/minor axes {catalogue TType keyword: Ellipticity} real 4     src.ellipticity
ell vhsDetection VHSDR3 1-b/a, where a/b=semi-major/minor axes {catalogue TType keyword: Ellipticity} real 4     src.ellipticity
ell vhsDetection VHSDR4 1-b/a, where a/b=semi-major/minor axes {catalogue TType keyword: Ellipticity} real 4     src.ellipticity
ell vhsDetection VHSv20120926 1-b/a, where a/b=semi-major/minor axes {catalogue TType keyword: Ellipticity} real 4     src.ellipticity
ell vhsDetection VHSv20130417 1-b/a, where a/b=semi-major/minor axes {catalogue TType keyword: Ellipticity} real 4     src.ellipticity
ell vhsDetection VHSv20140409 1-b/a, where a/b=semi-major/minor axes {catalogue TType keyword: Ellipticity} real 4     src.ellipticity
ell vhsDetection VHSv20150108 1-b/a, where a/b=semi-major/minor axes {catalogue TType keyword: Ellipticity} real 4     src.ellipticity
ell vhsDetection VHSv20160114 1-b/a, where a/b=semi-major/minor axes {catalogue TType keyword: Ellipticity} real 4     src.ellipticity
ell vhsDetection VHSv20160507 1-b/a, where a/b=semi-major/minor axes {catalogue TType keyword: Ellipticity} real 4     src.ellipticity
ell vhsDetection VHSv20170630 1-b/a, where a/b=semi-major/minor axes {catalogue TType keyword: Ellipticity} real 4     src.ellipticity
ell vhsDetection VHSv20171207 1-b/a, where a/b=semi-major/minor axes {catalogue TType keyword: Ellipticity} real 4     src.ellipticity
ell vhsDetection VHSv20180419 1-b/a, where a/b=semi-major/minor axes {catalogue TType keyword: Ellipticity} real 4     src.ellipticity
ell vhsDetection, vhsListRemeasurement VHSDR1 1-b/a, where a/b=semi-major/minor axes {catalogue TType keyword: Ellipticity} real 4     src.ellipticity
ell videoDetection VIDEODR2 1-b/a, where a/b=semi-major/minor axes (SE: THETA_IMAGE) {catalogue TType keyword: Ellipticity} real 4     src.ellipticity
ell videoDetection VIDEODR3 1-b/a, where a/b=semi-major/minor axes (SE: THETA_IMAGE) {catalogue TType keyword: Ellipticity} real 4     src.ellipticity
ell videoDetection VIDEODR4 1-b/a, where a/b=semi-major/minor axes (SE: THETA_IMAGE) {catalogue TType keyword: Ellipticity} real 4     src.ellipticity
ell videoDetection VIDEODR5 1-b/a, where a/b=semi-major/minor axes (SE: THETA_IMAGE) {catalogue TType keyword: Ellipticity} real 4     src.ellipticity
ell videoDetection VIDEOv20100513 1-b/a, where a/b=semi-major/minor axes (SE: THETA_IMAGE) {catalogue TType keyword: Ellipticity} real 4     src.ellipticity
ell videoDetection VIDEOv20111208 1-b/a, where a/b=semi-major/minor axes (SE: THETA_IMAGE) {catalogue TType keyword: Ellipticity} real 4     src.ellipticity
ell videoListRemeasurement VIDEOv20100513 1-b/a, where a/b=semi-major/minor axes {catalogue TType keyword: Ellipticity} real 4     src.ellipticity
ell vikingDetection VIKINGDR2 1-b/a, where a/b=semi-major/minor axes {catalogue TType keyword: Ellipticity} real 4     src.ellipticity
ell vikingDetection VIKINGDR3 1-b/a, where a/b=semi-major/minor axes {catalogue TType keyword: Ellipticity} real 4     src.ellipticity
ell vikingDetection VIKINGDR4 1-b/a, where a/b=semi-major/minor axes {catalogue TType keyword: Ellipticity} real 4     src.ellipticity
ell vikingDetection VIKINGv20111019 1-b/a, where a/b=semi-major/minor axes {catalogue TType keyword: Ellipticity} real 4     src.ellipticity
ell vikingDetection VIKINGv20130417 1-b/a, where a/b=semi-major/minor axes {catalogue TType keyword: Ellipticity} real 4     src.ellipticity
ell vikingDetection VIKINGv20140402 1-b/a, where a/b=semi-major/minor axes {catalogue TType keyword: Ellipticity} real 4     src.ellipticity
ell vikingDetection VIKINGv20150421 1-b/a, where a/b=semi-major/minor axes {catalogue TType keyword: Ellipticity} real 4     src.ellipticity
ell vikingDetection VIKINGv20151230 1-b/a, where a/b=semi-major/minor axes {catalogue TType keyword: Ellipticity} real 4     src.ellipticity
ell vikingDetection VIKINGv20160406 1-b/a, where a/b=semi-major/minor axes {catalogue TType keyword: Ellipticity} real 4     src.ellipticity
ell vikingDetection VIKINGv20161202 1-b/a, where a/b=semi-major/minor axes {catalogue TType keyword: Ellipticity} real 4     src.ellipticity
ell vikingDetection VIKINGv20170715 1-b/a, where a/b=semi-major/minor axes {catalogue TType keyword: Ellipticity} real 4     src.ellipticity
ell vikingDetection VIKINGv20181012 1-b/a, where a/b=semi-major/minor axes {catalogue TType keyword: Ellipticity} real 4     src.ellipticity
ell vikingDetection, vikingListRemeasurement VIKINGv20110714 1-b/a, where a/b=semi-major/minor axes {catalogue TType keyword: Ellipticity} real 4     src.ellipticity
ell vikingMapRemeasAver VIKINGZYSELJv20160909 Averaged 1-b/a, where a/b=semi-major/minor axes (SE: THETA_IMAGE) real 4     src.ellipticity
ell vikingMapRemeasAver VIKINGZYSELJv20170124 Averaged 1-b/a, where a/b=semi-major/minor axes (SE: THETA_IMAGE) real 4     src.ellipticity
ell vikingMapRemeasurement VIKINGZYSELJv20160909 1-b/a, where a/b=semi-major/minor axes (SE: THETA_IMAGE) {catalogue TType keyword: Ellipticity} real 4     src.ellipticity
ell vikingMapRemeasurement VIKINGZYSELJv20170124 1-b/a, where a/b=semi-major/minor axes (SE: THETA_IMAGE) {catalogue TType keyword: Ellipticity} real 4     src.ellipticity
ell vmcDetection VMCDR1 1-b/a, where a/b=semi-major/minor axes {catalogue TType keyword: Ellipticity} real 4     src.ellipticity
ell vmcDetection VMCDR2 1-b/a, where a/b=semi-major/minor axes {catalogue TType keyword: Ellipticity} real 4     src.ellipticity
ell vmcDetection VMCDR3 1-b/a, where a/b=semi-major/minor axes {catalogue TType keyword: Ellipticity} real 4     src.ellipticity
ell vmcDetection VMCDR4 1-b/a, where a/b=semi-major/minor axes {catalogue TType keyword: Ellipticity} real 4     src.ellipticity
ell vmcDetection VMCv20110909 1-b/a, where a/b=semi-major/minor axes {catalogue TType keyword: Ellipticity} real 4     src.ellipticity
ell vmcDetection VMCv20120126 1-b/a, where a/b=semi-major/minor axes {catalogue TType keyword: Ellipticity} real 4     src.ellipticity
ell vmcDetection VMCv20121128 1-b/a, where a/b=semi-major/minor axes {catalogue TType keyword: Ellipticity} real 4     src.ellipticity
ell vmcDetection VMCv20130304 1-b/a, where a/b=semi-major/minor axes {catalogue TType keyword: Ellipticity} real 4     src.ellipticity
ell vmcDetection VMCv20130805 1-b/a, where a/b=semi-major/minor axes {catalogue TType keyword: Ellipticity} real 4     src.ellipticity
ell vmcDetection VMCv20140428 1-b/a, where a/b=semi-major/minor axes {catalogue TType keyword: Ellipticity} real 4     src.ellipticity
ell vmcDetection VMCv20140903 1-b/a, where a/b=semi-major/minor axes {catalogue TType keyword: Ellipticity} real 4     src.ellipticity
ell vmcDetection VMCv20150309 1-b/a, where a/b=semi-major/minor axes {catalogue TType keyword: Ellipticity} real 4     src.ellipticity
ell vmcDetection VMCv20151218 1-b/a, where a/b=semi-major/minor axes {catalogue TType keyword: Ellipticity} real 4     src.ellipticity
ell vmcDetection VMCv20160311 1-b/a, where a/b=semi-major/minor axes {catalogue TType keyword: Ellipticity} real 4     src.ellipticity
ell vmcDetection VMCv20160822 1-b/a, where a/b=semi-major/minor axes {catalogue TType keyword: Ellipticity} real 4     src.ellipticity
ell vmcDetection VMCv20170109 1-b/a, where a/b=semi-major/minor axes {catalogue TType keyword: Ellipticity} real 4     src.ellipticity
ell vmcDetection VMCv20170411 1-b/a, where a/b=semi-major/minor axes {catalogue TType keyword: Ellipticity} real 4     src.ellipticity
ell vmcDetection VMCv20171101 1-b/a, where a/b=semi-major/minor axes {catalogue TType keyword: Ellipticity} real 4     src.ellipticity
ell vmcDetection VMCv20180702 1-b/a, where a/b=semi-major/minor axes {catalogue TType keyword: Ellipticity} real 4     src.ellipticity
ell vmcDetection VMCv20181120 1-b/a, where a/b=semi-major/minor axes {catalogue TType keyword: Ellipticity} real 4     src.ellipticity
ell vmcDetection, vmcListRemeasurement VMCv20110816 1-b/a, where a/b=semi-major/minor axes {catalogue TType keyword: Ellipticity} real 4     src.ellipticity
ell vvvDetection VVVDR4 1-b/a, where a/b=semi-major/minor axes {catalogue TType keyword: Ellipticity} real 4     src.ellipticity
ell vvvParallaxCatalogue, vvvProperMotionCatalogue VVVDR4 Mean Ks band ellipticity across all observations of this source in every pawprint set. {catalogue TType keyword: ell} real 4   -999999500.0  
ellfit_flg twomass_xsc TWOMASS ellipse fitting contamination flag. smallint 2     meta.code
ELLIPTICITY mgcDetection MGC 1 - B_IMAGE/A_IMAGE real 4      
elog_Av ravedr5Source RAVE Error of log_10(Av) optical extinction, see p4 ff, Mon. Not. R. Astron. Soc. 000, 1-8 (2012) real 4     stat.error;phys.absorption
elogg_K ravedr5Source RAVE Log gravity (Note 2, DR5) float 8 dex   phys.gravity
elon allwise_sc2 WISE Ecliptic longitude computed from the non-moving source fit equatorial position. CAUTION: This coordinate should not be used as an astrometric reference. float 8 deg    
emag vvvParallaxCatalogue, vvvProperMotionCatalogue VVVDR4 Median absolute deviation of Ks band aperMag2 measurements from all epochs in the pawprint set {catalogue TType keyword: emag} real 4   -999999500.0  
eMet_K ravedr5Source RAVE Error of [m/H] float 8 dex   phys.abund.Z
endDate AstrCalVers VHSDR1 MJD of the end time for this version of the calibration float 8 Julian days   time.epoch
endDate AstrCalVers VHSDR2 MJD of the end time for this version of the calibration float 8 Julian days   time.epoch
endDate AstrCalVers VHSDR3 MJD of the end time for this version of the calibration float 8 Julian days   time.epoch
endDate AstrCalVers VHSDR4 MJD of the end time for this version of the calibration float 8 Julian days   time.epoch
endDate AstrCalVers VHSv20120926 MJD of the end time for this version of the calibration float 8 Julian days   time.epoch
endDate AstrCalVers VHSv20130417 MJD of the end time for this version of the calibration float 8 Julian days   time.epoch
endDate AstrCalVers VHSv20150108 MJD of the end time for this version of the calibration float 8 Julian days   time.epoch
endDate AstrCalVers VHSv20160114 MJD of the end time for this version of the calibration float 8 Julian days   time.epoch
endDate AstrCalVers VHSv20160507 MJD of the end time for this version of the calibration float 8 Julian days   time.epoch
endDate AstrCalVers VHSv20170630 MJD of the end time for this version of the calibration float 8 Julian days   time.epoch
endDate AstrCalVers VHSv20171207 MJD of the end time for this version of the calibration float 8 Julian days   time.epoch
endDate AstrCalVers VHSv20180419 MJD of the end time for this version of the calibration float 8 Julian days   time.epoch
endDate AstrCalVers VIDEODR2 MJD of the end time for this version of the calibration float 8 Julian days   time.epoch
endDate AstrCalVers VIDEODR3 MJD of the end time for this version of the calibration float 8 Julian days   time.epoch
endDate AstrCalVers VIDEODR4 MJD of the end time for this version of the calibration float 8 Julian days   time.epoch
endDate AstrCalVers VIDEODR5 MJD of the end time for this version of the calibration float 8 Julian days   time.epoch
endDate AstrCalVers VIDEOv20100513 MJD of the end time for this version of the calibration float 8 Julian days   time.epoch
endDate AstrCalVers VIDEOv20111208 MJD of the end time for this version of the calibration float 8 Julian days   time.epoch
endDate AstrCalVers VIKINGDR2 MJD of the end time for this version of the calibration float 8 Julian days   time.epoch
endDate AstrCalVers VIKINGDR3 MJD of the end time for this version of the calibration float 8 Julian days   time.epoch
endDate AstrCalVers VIKINGDR4 MJD of the end time for this version of the calibration float 8 Julian days   time.epoch
endDate AstrCalVers VIKINGv20110714 MJD of the end time for this version of the calibration float 8 Julian days   time.epoch
endDate AstrCalVers VIKINGv20111019 MJD of the end time for this version of the calibration float 8 Julian days   time.epoch
endDate AstrCalVers VIKINGv20130417 MJD of the end time for this version of the calibration float 8 Julian days   time.epoch
endDate AstrCalVers VIKINGv20150421 MJD of the end time for this version of the calibration float 8 Julian days   time.epoch
endDate AstrCalVers VIKINGv20151230 MJD of the end time for this version of the calibration float 8 Julian days   time.epoch
endDate AstrCalVers VIKINGv20160406 MJD of the end time for this version of the calibration float 8 Julian days   time.epoch
endDate AstrCalVers VIKINGv20161202 MJD of the end time for this version of the calibration float 8 Julian days   time.epoch
endDate AstrCalVers VIKINGv20170715 MJD of the end time for this version of the calibration float 8 Julian days   time.epoch
endDate AstrCalVers VIKINGv20181012 MJD of the end time for this version of the calibration float 8 Julian days   time.epoch
endDate AstrCalVers VMCDR1 MJD of the end time for this version of the calibration float 8 Julian days   time.epoch
endDate AstrCalVers VMCDR3 MJD of the end time for this version of the calibration float 8 Julian days   time.epoch
endDate AstrCalVers VMCDR4 MJD of the end time for this version of the calibration float 8 Julian days   time.epoch
endDate AstrCalVers VMCv20110816 MJD of the end time for this version of the calibration float 8 Julian days   time.epoch
endDate AstrCalVers VMCv20110909 MJD of the end time for this version of the calibration float 8 Julian days   time.epoch
endDate AstrCalVers VMCv20120126 MJD of the end time for this version of the calibration float 8 Julian days   time.epoch
endDate AstrCalVers VMCv20121128 MJD of the end time for this version of the calibration float 8 Julian days   time.epoch
endDate AstrCalVers VMCv20130304 MJD of the end time for this version of the calibration float 8 Julian days   time.epoch
endDate AstrCalVers VMCv20130805 MJD of the end time for this version of the calibration float 8 Julian days   time.epoch
endDate AstrCalVers VMCv20140428 MJD of the end time for this version of the calibration float 8 Julian days   time.epoch
endDate AstrCalVers VMCv20140903 MJD of the end time for this version of the calibration float 8 Julian days   time.epoch
endDate AstrCalVers VMCv20150309 MJD of the end time for this version of the calibration float 8 Julian days   time.epoch
endDate AstrCalVers VMCv20151218 MJD of the end time for this version of the calibration float 8 Julian days   time.epoch
endDate AstrCalVers VMCv20160311 MJD of the end time for this version of the calibration float 8 Julian days   time.epoch
endDate AstrCalVers VMCv20160822 MJD of the end time for this version of the calibration float 8 Julian days   time.epoch
endDate AstrCalVers VMCv20170109 MJD of the end time for this version of the calibration float 8 Julian days   time.epoch
endDate AstrCalVers VMCv20170411 MJD of the end time for this version of the calibration float 8 Julian days   time.epoch
endDate AstrCalVers VMCv20171101 MJD of the end time for this version of the calibration float 8 Julian days   time.epoch
endDate AstrCalVers VMCv20180702 MJD of the end time for this version of the calibration float 8 Julian days   time.epoch
endDate AstrCalVers VMCv20181120 MJD of the end time for this version of the calibration float 8 Julian days   time.epoch
endDate AstrCalVers VVVDR4 MJD of the end time for this version of the calibration float 8 Julian days   time.epoch
endDate PhotCalVers VHSDR1 Date time of end time for this version of the calibration (MM-DD-YYYY) datetime 8 MM-DD-YYYY 12-31-9999 time.epoch
endDate PhotCalVers VHSDR2 Date time of end time for this version of the calibration (MM-DD-YYYY) datetime 8 MM-DD-YYYY 12-31-9999 time.epoch
endDate PhotCalVers VHSDR3 Date time of end time for this version of the calibration (MM-DD-YYYY) datetime 8 MM-DD-YYYY 12-31-9999 time.epoch
endDate PhotCalVers VHSDR4 Date time of end time for this version of the calibration (MM-DD-YYYY) datetime 8 MM-DD-YYYY 12-31-9999 time.epoch
endDate PhotCalVers VHSv20120926 Date time of end time for this version of the calibration (MM-DD-YYYY) datetime 8 MM-DD-YYYY 12-31-9999 time.epoch
endDate PhotCalVers VHSv20130417 Date time of end time for this version of the calibration (MM-DD-YYYY) datetime 8 MM-DD-YYYY 12-31-9999 time.epoch
endDate PhotCalVers VHSv20150108 Date time of end time for this version of the calibration (MM-DD-YYYY) datetime 8 MM-DD-YYYY 12-31-9999 time.epoch
endDate PhotCalVers VHSv20160114 Date time of end time for this version of the calibration (MM-DD-YYYY) datetime 8 MM-DD-YYYY 12-31-9999 time.epoch
endDate PhotCalVers VHSv20160507 Date time of end time for this version of the calibration (MM-DD-YYYY) datetime 8 MM-DD-YYYY 12-31-9999 time.epoch
endDate PhotCalVers VHSv20170630 Date time of end time for this version of the calibration (MM-DD-YYYY) datetime 8 MM-DD-YYYY 12-31-9999 time.epoch
endDate PhotCalVers VHSv20171207 Date time of end time for this version of the calibration (MM-DD-YYYY) datetime 8 MM-DD-YYYY 12-31-9999 time.epoch
endDate PhotCalVers VHSv20180419 Date time of end time for this version of the calibration (MM-DD-YYYY) datetime 8 MM-DD-YYYY 12-31-9999 time.epoch
endDate PhotCalVers VIDEODR2 Date time of end time for this version of the calibration (MM-DD-YYYY) datetime 8 MM-DD-YYYY 12-31-9999 time.epoch
endDate PhotCalVers VIDEODR3 Date time of end time for this version of the calibration (MM-DD-YYYY) datetime 8 MM-DD-YYYY 12-31-9999 time.epoch
endDate PhotCalVers VIDEODR4 Date time of end time for this version of the calibration (MM-DD-YYYY) datetime 8 MM-DD-YYYY 12-31-9999 time.epoch
endDate PhotCalVers VIDEODR5 Date time of end time for this version of the calibration (MM-DD-YYYY) datetime 8 MM-DD-YYYY 12-31-9999 time.epoch
endDate PhotCalVers VIDEOv20100513 Date time of end time for this version of the calibration (MM-DD-YYYY) datetime 8 MM-DD-YYYY 12-31-9999 time.epoch
endDate PhotCalVers VIDEOv20111208 Date time of end time for this version of the calibration (MM-DD-YYYY) datetime 8 MM-DD-YYYY 12-31-9999 time.epoch
endDate PhotCalVers VIKINGDR2 Date time of end time for this version of the calibration (MM-DD-YYYY) datetime 8 MM-DD-YYYY 12-31-9999 time.epoch
endDate PhotCalVers VIKINGDR3 Date time of end time for this version of the calibration (MM-DD-YYYY) datetime 8 MM-DD-YYYY 12-31-9999 time.epoch
endDate PhotCalVers VIKINGDR4 Date time of end time for this version of the calibration (MM-DD-YYYY) datetime 8 MM-DD-YYYY 12-31-9999 time.epoch
endDate PhotCalVers VIKINGv20110714 Date time of end time for this version of the calibration (MM-DD-YYYY) datetime 8 MM-DD-YYYY 12-31-9999 time.epoch
endDate PhotCalVers VIKINGv20111019 Date time of end time for this version of the calibration (MM-DD-YYYY) datetime 8 MM-DD-YYYY 12-31-9999 time.epoch
endDate PhotCalVers VIKINGv20130417 Date time of end time for this version of the calibration (MM-DD-YYYY) datetime 8 MM-DD-YYYY 12-31-9999 time.epoch
endDate PhotCalVers VIKINGv20150421 Date time of end time for this version of the calibration (MM-DD-YYYY) datetime 8 MM-DD-YYYY 12-31-9999 time.epoch
endDate PhotCalVers VIKINGv20151230 Date time of end time for this version of the calibration (MM-DD-YYYY) datetime 8 MM-DD-YYYY 12-31-9999 time.epoch
endDate PhotCalVers VIKINGv20160406 Date time of end time for this version of the calibration (MM-DD-YYYY) datetime 8 MM-DD-YYYY 12-31-9999 time.epoch
endDate PhotCalVers VIKINGv20161202 Date time of end time for this version of the calibration (MM-DD-YYYY) datetime 8 MM-DD-YYYY 12-31-9999 time.epoch
endDate PhotCalVers VIKINGv20170715 Date time of end time for this version of the calibration (MM-DD-YYYY) datetime 8 MM-DD-YYYY 12-31-9999 time.epoch
endDate PhotCalVers VIKINGv20181012 Date time of end time for this version of the calibration (MM-DD-YYYY) datetime 8 MM-DD-YYYY 12-31-9999 time.epoch
endDate PhotCalVers VMCDR1 Date time of end time for this version of the calibration (MM-DD-YYYY) datetime 8 MM-DD-YYYY 12-31-9999 time.epoch
endDate PhotCalVers VMCDR3 Date time of end time for this version of the calibration (MM-DD-YYYY) datetime 8 MM-DD-YYYY 12-31-9999 time.epoch
endDate PhotCalVers VMCDR4 Date time of end time for this version of the calibration (MM-DD-YYYY) datetime 8 MM-DD-YYYY 12-31-9999 time.epoch
endDate PhotCalVers VMCv20110816 Date time of end time for this version of the calibration (MM-DD-YYYY) datetime 8 MM-DD-YYYY 12-31-9999 time.epoch
endDate PhotCalVers VMCv20110909 Date time of end time for this version of the calibration (MM-DD-YYYY) datetime 8 MM-DD-YYYY 12-31-9999 time.epoch
endDate PhotCalVers VMCv20120126 Date time of end time for this version of the calibration (MM-DD-YYYY) datetime 8 MM-DD-YYYY 12-31-9999 time.epoch
endDate PhotCalVers VMCv20121128 Date time of end time for this version of the calibration (MM-DD-YYYY) datetime 8 MM-DD-YYYY 12-31-9999 time.epoch
endDate PhotCalVers VMCv20130304 Date time of end time for this version of the calibration (MM-DD-YYYY) datetime 8 MM-DD-YYYY 12-31-9999 time.epoch
endDate PhotCalVers VMCv20130805 Date time of end time for this version of the calibration (MM-DD-YYYY) datetime 8 MM-DD-YYYY 12-31-9999 time.epoch
endDate PhotCalVers VMCv20140428 Date time of end time for this version of the calibration (MM-DD-YYYY) datetime 8 MM-DD-YYYY 12-31-9999 time.epoch
endDate PhotCalVers VMCv20140903 Date time of end time for this version of the calibration (MM-DD-YYYY) datetime 8 MM-DD-YYYY 12-31-9999 time.epoch
endDate PhotCalVers VMCv20150309 Date time of end time for this version of the calibration (MM-DD-YYYY) datetime 8 MM-DD-YYYY 12-31-9999 time.epoch
endDate PhotCalVers VMCv20151218 Date time of end time for this version of the calibration (MM-DD-YYYY) datetime 8 MM-DD-YYYY 12-31-9999 time.epoch
endDate PhotCalVers VMCv20160311 Date time of end time for this version of the calibration (MM-DD-YYYY) datetime 8 MM-DD-YYYY 12-31-9999 time.epoch
endDate PhotCalVers VMCv20160822 Date time of end time for this version of the calibration (MM-DD-YYYY) datetime 8 MM-DD-YYYY 12-31-9999 time.epoch
endDate PhotCalVers VMCv20170109 Date time of end time for this version of the calibration (MM-DD-YYYY) datetime 8 MM-DD-YYYY 12-31-9999 time.epoch
endDate PhotCalVers VMCv20170411 Date time of end time for this version of the calibration (MM-DD-YYYY) datetime 8 MM-DD-YYYY 12-31-9999 time.epoch
endDate PhotCalVers VMCv20171101 Date time of end time for this version of the calibration (MM-DD-YYYY) datetime 8 MM-DD-YYYY 12-31-9999 time.epoch
endDate PhotCalVers VMCv20180702 Date time of end time for this version of the calibration (MM-DD-YYYY) datetime 8 MM-DD-YYYY 12-31-9999 time.epoch
endDate PhotCalVers VMCv20181120 Date time of end time for this version of the calibration (MM-DD-YYYY) datetime 8 MM-DD-YYYY 12-31-9999 time.epoch
endDate PhotCalVers VVVDR4 Date time of end time for this version of the calibration (MM-DD-YYYY) datetime 8 MM-DD-YYYY 12-31-9999 time.epoch
EP_1_FLUX twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0, xmm3dr4 XMM EP band 1 flux real 4 erg/cm**2/s    
EP_1_FLUX_ERR twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0, xmm3dr4 XMM EP band 1 flux error
EP_1_FLUX_ERR = SQRT ( 1.0 / SUM ( 1 / ca_1_FLUX_ERR2 )), where ca = PN, M1, M2
real 4 erg/cm**2/s    
EP_2_FLUX twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0, xmm3dr4 XMM EP band 2 flux real 4 erg/cm**2/s    
EP_2_FLUX_ERR twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0, xmm3dr4 XMM EP band 2 flux error
EP_2_FLUX_ERR = SQRT ( 1.0 / SUM ( 1 / ca_2_FLUX_ERR2 )), where ca = PN, M1, M2
real 4 erg/cm**2/s    
EP_3_FLUX twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0, xmm3dr4 XMM EP band 3 flux real 4 erg/cm**2/s    
EP_3_FLUX_ERR twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0, xmm3dr4 XMM EP band 3 flux error
EP_3_FLUX_ERR = SQRT ( 1.0 / SUM ( 1 / ca_3_FLUX_ERR2 )), where ca = PN, M1, M2
real 4 erg/cm**2/s    
EP_4_FLUX twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0, xmm3dr4 XMM EP band 4 flux real 4 erg/cm**2/s    
EP_4_FLUX_ERR twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0, xmm3dr4 XMM EP band 4 flux error
EP_4_FLUX_ERR = SQRT ( 1.0 / SUM ( 1 / ca_4_FLUX_ERR2 )), where ca = PN, M1, M2
real 4 erg/cm**2/s    
EP_5_FLUX twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0, xmm3dr4 XMM EP band 5 flux real 4 erg/cm**2/s    
EP_5_FLUX_ERR twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0, xmm3dr4 XMM EP band 5 flux error
EP_5_FLUX_ERR = SQRT ( 1.0 / SUM ( 1 / ca_5_FLUX_ERR2 )), where ca = PN, M1, M2
real 4 erg/cm**2/s    
EP_8_CTS twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0, xmm3dr4 XMM Combined band source counts real 4 counts    
EP_8_CTS_ERR twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0, xmm3dr4 XMM Combined band source counts 1 σ error real 4 counts    
EP_8_DET_ML twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0, xmm3dr4 XMM EP band 8 Maximum likelihood real 4      
EP_8_FLUX twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0, xmm3dr4 XMM EP band 8 flux real 4 erg/cm**2/s    
EP_8_FLUX_ERR twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0, xmm3dr4 XMM EP band 8 flux error
EP_8_FLUX_ERR = SQRT ( 1.0 / SUM ( 1 / ca_8_FLUX_ERR2 )), where ca = PN, M1, M2
real 4 erg/cm**2/s    
EP_8_RATE twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0, xmm3dr4 XMM EP band 8 Count rates real 4 counts/s    
EP_8_RATE_ERR twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0, xmm3dr4 XMM EP band 8 Count rates error real 4 counts/s    
EP_9_DET_ML twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0, xmm3dr4 XMM EP band 9 Maximum likelihood real 4      
EP_9_FLUX twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0, xmm3dr4 XMM EP band 9 flux real 4 erg/cm**2/s    
EP_9_FLUX_ERR twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0, xmm3dr4 XMM EP band 9 flux error
EP_9_FLUX_ERR = SQRT ( 1.0 / SUM ( 1 / ca_9_FLUX_ERR2 )), where ca = PN, M1, M2
real 4 erg/cm**2/s    
EP_9_RATE twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0, xmm3dr4 XMM EP band 9 Count rates real 4 counts/s    
EP_9_RATE_ERR twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0, xmm3dr4 XMM EP band 9 Count rates error real 4 counts/s    
EP_CHI2PROB twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0 XMM The Chi² probability (based on the null hypothesis) that the source as detected by any of the cameras, is constant. The minimum value of the available camera probabilities (PN_CHI2PROB, M1_CHI2PROB, M2_CHI2PROB) is given. real 4      
EP_CHI2PROB xmm3dr4 XMM The Chi² probability (based on the null hypothesis) that the source as detected by any of the cameras, is constant. The minimum value of the available camera probabilities (PN_CHI2PROB, M1_CHI2PROB, M2_CHI2PROB) is given. float 8      
ep_de1990 tycho2 GAIADR1 Epoch - 1990 of de_deg real 4 years   time.epoch
ep_de_m tycho2 GAIADR1 Mean epoch of dec (Julian years) real 4 years   time.epoch
EP_DIST_NN twoxmmi_dr3_v1_0 XMM The distance to the nearest neighbouring detection.
An internal threshold of 6 arseconds (before positional fitting) is used for splitting a source into two.
real 4 arcsec    
EP_EXTENT twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0, xmm3dr4 XMM The Extent radius of a source detected as extended. real 4 arcsec    
EP_EXTENT_ERR twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0, xmm3dr4 XMM The Extent error of a source detected as extended. real 4 arcsec    
EP_EXTENT_ML twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0, xmm3dr4 XMM The extent likelihood is the likelihood of the detection being extended as given by P = - ln (EXTENT_ML) , where P is the probability the extent occurring by chance. real 4      
EP_FLAG twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0 XMM EPIC flag string made of the flags 1 - 12 (counted from left to right), where flag 10 is not used: it combines the PN, M1, and M2 flags, that is, a flag is set in EP_FLAG if at least one of the camera-dependent flags is set. varchar 12      
EP_FLAG xmm3dr4 XMM EPIC flag string made of the flags 1 - 12 (counted from left to right), where flag 10 is not used: it combines the PN, M1, and M2 flags, that is, a flag is set in EP_FLAG if at least one of the camera-dependent flags is set. varchar 50      
EP_HR1 twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0, xmm3dr4 XMM The EP hardness ratio between the bands 1 & 2
In the case where the rate in one band is 0.0 (i.e., too faint to be detected in this band) the hardness ratio will be -1 or +1 which is only a lower or upper limit, respectively.
real 4      
EP_HR1_ERR twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0, xmm3dr4 XMM The 1 σ error of the EP hardness ratio between the bands 1 & 2 real 4      
EP_HR2 twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0, xmm3dr4 XMM The EP hardness ratio between the bands 2 & 3
In the case where the rate in one band is 0.0 (i.e., too faint to be detected in this band) the hardness ratio will be -1 or +1 which is only a lower or upper limit, respectively.
real 4      
EP_HR2_ERR twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0, xmm3dr4 XMM The 1 σ error of the EP hardness ratio between the bands 2 & 3 real 4      
EP_HR3 twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0, xmm3dr4 XMM The EP hardness ratio between the bands 3 & 4
In the case where the rate in one band is 0.0 (i.e., too faint to be detected in this band) the hardness ratio will be -1 or +1 which is only a lower or upper limit, respectively.
real 4      
EP_HR3_ERR twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0, xmm3dr4 XMM The 1 σ error of the EP hardness ratio between the bands 3 & 4 real 4      
EP_HR4 twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0, xmm3dr4 XMM The EP hardness ratio between the bands 4 & 5
In the case where the rate in one band is 0.0 (i.e., too faint to be detected in this band) the hardness ratio will be -1 or +1 which is only a lower or upper limit, respectively.
real 4      
EP_HR4_ERR twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0, xmm3dr4 XMM The 1 σ error of the EP hardness ratio between the bands 4 & 5 real 4      
EP_OFFAX twoxmmi_dr3_v1_0, xmm3dr4 XMM The EP offaxis angle (the distance between the detection position and the onaxis position on the respective detector).
The offaxis angle for a camera can be larger than 15 arcminutes when the detection is located outside the FOV of that camera.
real 4 arcmin    
EP_ONTIME twoxmmi_dr3_v1_0, xmm3dr4 XMM The EP ontime value (the total good exposure time (after GTI filtering) of the CCD where the detection is positioned).
If a source position falls into CCD gaps or outside of the detector it will have a NULL given.
real 4 s    
ep_ra1990 tycho2 GAIADR1 Epoch - 1990 of ra_deg real 4 years   time.epoch
ep_ra_m tycho2 GAIADR1 Mean epoch of ra (Julian years) real 4 years   time.epoch
eparallax ravedr5Source RAVE Error of spectrophotometric Parallax (Binney et al. 2014) real 4 mas   stat.error;pos.parallax
eplx vvvParallaxCatalogue VVVDR4 Error on parallax. These are inverse variance weighted averages across their measured values in both equatorial tangent plane dimensions and from all pawprint sets. {catalogue TType keyword: eplx} float 8 mas -999999500.0  
epm vvvParallaxCatalogue, vvvProperMotionCatalogue VVVDR4 Error on total proper motion {catalogue TType keyword: epm} float 8 mas/yr -999999500.0  
epmDE_PPMXL ravedr5Source RAVE Proper Motion error (Declination) real 4 mas/yr   stat.error;pos.pm;pos.eq.dec
epmDE_TYCHO2 ravedr5Source RAVE Proper Motion error (Declination) real 4 mas/yr   stat.error;pos.pm;pos.eq.dec
epmDE_UCAC4 ravedr5Source RAVE Proper Motion error (Declination) real 4 mas/yr   stat.error;pos.pm;pos.eq.dec
epmDE_USNOB1 ravedr5Source RAVE Proper Motion error (Declination) real 4 mas/yr   stat.error;pos.pm;pos.eq.dec
epmRA_PPMXL ravedr5Source RAVE Proper Motion error (Right Ascension) real 4 mas/yr   stat.error;pos.pm;pos.eq.ra
epmRA_TYCHO2 ravedr5Source RAVE Proper Motion error (Right Ascension) real 4 mas/yr   stat.error;pos.pm;pos.eq.ra
epmRA_UCAC4 ravedr5Source RAVE Proper Motion error (Right Ascension) real 4 mas/yr   stat.error;pos.pm.pos.eq.ra
epmRA_USNOB1 ravedr5Source RAVE Proper Motion error (Right Ascension) real 4 mas/yr   stat.error;pos.pm;pos.eq.ra
Epoch denisDR3Source DENIS Epoch of USNOA2.0 nearest match float 8 yr    
epoch RequiredMergeLogMultiEpoch VHSv20160114 Epoch number in MergeLog table tinyint 1      
epoch RequiredMergeLogMultiEpoch VHSv20160507 Epoch number in MergeLog table tinyint 1      
epoch RequiredMergeLogMultiEpoch VHSv20170630 Epoch number in MergeLog table tinyint 1      
epoch RequiredMergeLogMultiEpoch VHSv20171207 Epoch number in MergeLog table tinyint 1      
epoch RequiredMergeLogMultiEpoch VHSv20180419 Epoch number in MergeLog table tinyint 1      
epoch RequiredMergeLogMultiEpoch VIKINGv20151230 Epoch number in MergeLog table tinyint 1      
epoch RequiredMergeLogMultiEpoch VIKINGv20160406 Epoch number in MergeLog table tinyint 1      
epoch RequiredMergeLogMultiEpoch VIKINGv20161202 Epoch number in MergeLog table tinyint 1      
epoch RequiredMergeLogMultiEpoch VIKINGv20170715 Epoch number in MergeLog table tinyint 1      
epoch RequiredMergeLogMultiEpoch VIKINGv20181012 Epoch number in MergeLog table tinyint 1      
epoch RequiredMergeLogMultiEpoch VMCDR4 Epoch number in MergeLog table tinyint 1      
epoch RequiredMergeLogMultiEpoch VMCv20151218 Epoch number in MergeLog table tinyint 1      
epoch RequiredMergeLogMultiEpoch VMCv20160311 Epoch number in MergeLog table tinyint 1      
epoch RequiredMergeLogMultiEpoch VMCv20160822 Epoch number in MergeLog table tinyint 1      
epoch RequiredMergeLogMultiEpoch VMCv20170109 Epoch number in MergeLog table tinyint 1      
epoch RequiredMergeLogMultiEpoch VMCv20170411 Epoch number in MergeLog table tinyint 1      
epoch RequiredMergeLogMultiEpoch VMCv20171101 Epoch number in MergeLog table tinyint 1      
epoch RequiredMergeLogMultiEpoch VMCv20180702 Epoch number in MergeLog table tinyint 1      
epoch RequiredMergeLogMultiEpoch VMCv20181120 Epoch number in MergeLog table tinyint 1      
epoch RequiredMergeLogMultiEpoch VVVDR4 Epoch number in MergeLog table tinyint 1      
epoch sage_lmcIracSource, sage_lmcMips160Source, sage_lmcMips24Source, sage_lmcMips70Source SPITZER Character string identifier for epoch of source varchar 16      
epoch sage_smcIRACv1_5Source SPITZER Character string identifier for the epoch of the observation of the source, i.e. "epoch 1", "epoch 2", "epoch 1+2",... varchar 16      
epoch ukirtFSstars VIDEOv20100513 The epoch of columns ra and dec real 4 years -0.9999995e9  
epoch ukirtFSstars VIKINGv20110714 The epoch of columns ra and dec real 4 years -0.9999995e9  
epoch vhsSourceRemeasurement VHSDR1 Epoch of position measurement float 8 Years -0.9999995e9 time.epoch
epoch videoSourceRemeasurement VIDEOv20100513 Epoch of position measurement float 8 Years -0.9999995e9 time.epoch
epoch videoVariability VIDEODR2 Epoch of measurement float 8 Years   time.epoch
The Variability table contains statistics from the set of observations of each source. At present, the mean ra and dec and the error in two tangential directions are calculated. The "ra" direction is defined as tangential to both the radial direction and the cartesian z-axis and the "dec" direction is defined as both the radial direction and the "ra" direction. Since the current model is just the mean and standard deviation of the data, then the chi-squared of the fit=1. Data from good frames across all bands go into the astrometric model determination. This will include bands in non-synoptic filters: the one observation in these bands can help. In future releases a fit will be made to the rms data as a function of magnitude in each band, as has already happened for photometric data and a motion model that incorporates proper motion (and possibly parallax) will be used. The motion model is a parameter in the VarFrameSetInfo table.
epoch videoVariability VIDEODR3 Epoch of measurement float 8 Years   time.epoch
The Variability table contains statistics from the set of observations of each source. At present, the mean ra and dec and the error in two tangential directions are calculated. The "ra" direction is defined as tangential to both the radial direction and the cartesian z-axis and the "dec" direction is defined as both the radial direction and the "ra" direction. Since the current model is just the mean and standard deviation of the data, then the chi-squared of the fit=1. Data from good frames across all bands go into the astrometric model determination. This will include bands in non-synoptic filters: the one observation in these bands can help. In future releases a fit will be made to the rms data as a function of magnitude in each band, as has already happened for photometric data and a motion model that incorporates proper motion (and possibly parallax) will be used. The motion model is a parameter in the VarFrameSetInfo table.
epoch videoVariability VIDEODR4 Epoch of measurement float 8 Years   time.epoch
The Variability table contains statistics from the set of observations of each source. At present, the mean ra and dec and the error in two tangential directions are calculated. The "ra" direction is defined as tangential to both the radial direction and the cartesian z-axis and the "dec" direction is defined as both the radial direction and the "ra" direction. Since the current model is just the mean and standard deviation of the data, then the chi-squared of the fit=1. Data from good frames across all bands go into the astrometric model determination. This will include bands in non-synoptic filters: the one observation in these bands can help. In future releases a fit will be made to the rms data as a function of magnitude in each band, as has already happened for photometric data and a motion model that incorporates proper motion (and possibly parallax) will be used. The motion model is a parameter in the VarFrameSetInfo table.
epoch videoVariability VIDEODR5 Epoch of measurement float 8 Years   time.epoch
The Variability table contains statistics from the set of observations of each source. At present, the mean ra and dec and the error in two tangential directions are calculated. The "ra" direction is defined as tangential to both the radial direction and the cartesian z-axis and the "dec" direction is defined as both the radial direction and the "ra" direction. Since the current model is just the mean and standard deviation of the data, then the chi-squared of the fit=1. Data from good frames across all bands go into the astrometric model determination. This will include bands in non-synoptic filters: the one observation in these bands can help. In future releases a fit will be made to the rms data as a function of magnitude in each band, as has already happened for photometric data and a motion model that incorporates proper motion (and possibly parallax) will be used. The motion model is a parameter in the VarFrameSetInfo table.
epoch videoVariability VIDEOv20100513 Epoch of measurement float 8 Years   time.epoch
The Variability table contains statistics from the set of observations of each source. At present, the mean ra and dec and the error in two tangential directions are calculated. The "ra" direction is defined as tangential to both the radial direction and the cartesian z-axis and the "dec" direction is defined as both the radial direction and the "ra" direction. Since the current model is just the mean and standard deviation of the data, then the chi-squared of the fit=1. Data from good frames across all bands go into the astrometric model determination. This will include bands in non-synoptic filters: the one observation in these bands can help. In future releases a fit will be made to the rms data as a function of magnitude in each band, as has already happened for photometric data and a motion model that incorporates proper motion (and possibly parallax) will be used. The motion model is a parameter in the VarFrameSetInfo table.
epoch videoVariability VIDEOv20111208 Epoch of measurement float 8 Years   time.epoch
The Variability table contains statistics from the set of observations of each source. At present, the mean ra and dec and the error in two tangential directions are calculated. The "ra" direction is defined as tangential to both the radial direction and the cartesian z-axis and the "dec" direction is defined as both the radial direction and the "ra" direction. Since the current model is just the mean and standard deviation of the data, then the chi-squared of the fit=1. Data from good frames across all bands go into the astrometric model determination. This will include bands in non-synoptic filters: the one observation in these bands can help. In future releases a fit will be made to the rms data as a function of magnitude in each band, as has already happened for photometric data and a motion model that incorporates proper motion (and possibly parallax) will be used. The motion model is a parameter in the VarFrameSetInfo table.
epoch vikingSourceRemeasurement VIKINGv20110714 Epoch of position measurement float 8 Years -0.9999995e9 time.epoch
epoch vikingSourceRemeasurement VIKINGv20111019 Epoch of position measurement float 8 Years -0.9999995e9 time.epoch
epoch vikingVariability VIKINGDR2 Epoch of measurement float 8 Years   time.epoch
The Variability table contains statistics from the set of observations of each source. At present, the mean ra and dec and the error in two tangential directions are calculated. The "ra" direction is defined as tangential to both the radial direction and the cartesian z-axis and the "dec" direction is defined as both the radial direction and the "ra" direction. Since the current model is just the mean and standard deviation of the data, then the chi-squared of the fit=1. Data from good frames across all bands go into the astrometric model determination. This will include bands in non-synoptic filters: the one observation in these bands can help. In future releases a fit will be made to the rms data as a function of magnitude in each band, as has already happened for photometric data and a motion model that incorporates proper motion (and possibly parallax) will be used. The motion model is a parameter in the VarFrameSetInfo table.
epoch vikingVariability VIKINGDR3 Epoch of measurement float 8 Years   time.epoch
The Variability table contains statistics from the set of observations of each source. At present, the mean ra and dec and the error in two tangential directions are calculated. The "ra" direction is defined as tangential to both the radial direction and the cartesian z-axis and the "dec" direction is defined as both the radial direction and the "ra" direction. Since the current model is just the mean and standard deviation of the data, then the chi-squared of the fit=1. Data from good frames across all bands go into the astrometric model determination. This will include bands in non-synoptic filters: the one observation in these bands can help. In future releases a fit will be made to the rms data as a function of magnitude in each band, as has already happened for photometric data and a motion model that incorporates proper motion (and possibly parallax) will be used. The motion model is a parameter in the VarFrameSetInfo table.
epoch vikingVariability VIKINGDR4 Epoch of measurement float 8 Years   time.epoch
The Variability table contains statistics from the set of observations of each source. At present, the mean ra and dec and the error in two tangential directions are calculated. The "ra" direction is defined as tangential to both the radial direction and the cartesian z-axis and the "dec" direction is defined as both the radial direction and the "ra" direction. Since the current model is just the mean and standard deviation of the data, then the chi-squared of the fit=1. Data from good frames across all bands go into the astrometric model determination. This will include bands in non-synoptic filters: the one observation in these bands can help. In future releases a fit will be made to the rms data as a function of magnitude in each band, as has already happened for photometric data and a motion model that incorporates proper motion (and possibly parallax) will be used. The motion model is a parameter in the VarFrameSetInfo table.
epoch vikingVariability VIKINGv20110714 Epoch of measurement float 8 Years   time.epoch
The Variability table contains statistics from the set of observations of each source. At present, the mean ra and dec and the error in two tangential directions are calculated. The "ra" direction is defined as tangential to both the radial direction and the cartesian z-axis and the "dec" direction is defined as both the radial direction and the "ra" direction. Since the current model is just the mean and standard deviation of the data, then the chi-squared of the fit=1. Data from good frames across all bands go into the astrometric model determination. This will include bands in non-synoptic filters: the one observation in these bands can help. In future releases a fit will be made to the rms data as a function of magnitude in each band, as has already happened for photometric data and a motion model that incorporates proper motion (and possibly parallax) will be used. The motion model is a parameter in the VarFrameSetInfo table.
epoch vikingVariability VIKINGv20111019 Epoch of measurement float 8 Years   time.epoch
The Variability table contains statistics from the set of observations of each source. At present, the mean ra and dec and the error in two tangential directions are calculated. The "ra" direction is defined as tangential to both the radial direction and the cartesian z-axis and the "dec" direction is defined as both the radial direction and the "ra" direction. Since the current model is just the mean and standard deviation of the data, then the chi-squared of the fit=1. Data from good frames across all bands go into the astrometric model determination. This will include bands in non-synoptic filters: the one observation in these bands can help. In future releases a fit will be made to the rms data as a function of magnitude in each band, as has already happened for photometric data and a motion model that incorporates proper motion (and possibly parallax) will be used. The motion model is a parameter in the VarFrameSetInfo table.
epoch vikingVariability VIKINGv20130417 Epoch of measurement float 8 Years   time.epoch
The Variability table contains statistics from the set of observations of each source. At present, the mean ra and dec and the error in two tangential directions are calculated. The "ra" direction is defined as tangential to both the radial direction and the cartesian z-axis and the "dec" direction is defined as both the radial direction and the "ra" direction. Since the current model is just the mean and standard deviation of the data, then the chi-squared of the fit=1. Data from good frames across all bands go into the astrometric model determination. This will include bands in non-synoptic filters: the one observation in these bands can help. In future releases a fit will be made to the rms data as a function of magnitude in each band, as has already happened for photometric data and a motion model that incorporates proper motion (and possibly parallax) will be used. The motion model is a parameter in the VarFrameSetInfo table.
epoch vikingVariability VIKINGv20140402 Epoch of measurement float 8 Years   time.epoch
The Variability table contains statistics from the set of observations of each source. At present, the mean ra and dec and the error in two tangential directions are calculated. The "ra" direction is defined as tangential to both the radial direction and the cartesian z-axis and the "dec" direction is defined as both the radial direction and the "ra" direction. Since the current model is just the mean and standard deviation of the data, then the chi-squared of the fit=1. Data from good frames across all bands go into the astrometric model determination. This will include bands in non-synoptic filters: the one observation in these bands can help. In future releases a fit will be made to the rms data as a function of magnitude in each band, as has already happened for photometric data and a motion model that incorporates proper motion (and possibly parallax) will be used. The motion model is a parameter in the VarFrameSetInfo table.
epoch vikingVariability VIKINGv20150421 Epoch of measurement float 8 Years   time.epoch
The Variability table contains statistics from the set of observations of each source. At present, the mean ra and dec and the error in two tangential directions are calculated. The "ra" direction is defined as tangential to both the radial direction and the cartesian z-axis and the "dec" direction is defined as both the radial direction and the "ra" direction. Since the current model is just the mean and standard deviation of the data, then the chi-squared of the fit=1. Data from good frames across all bands go into the astrometric model determination. This will include bands in non-synoptic filters: the one observation in these bands can help. In future releases a fit will be made to the rms data as a function of magnitude in each band, as has already happened for photometric data and a motion model that incorporates proper motion (and possibly parallax) will be used. The motion model is a parameter in the VarFrameSetInfo table.
epoch vikingVariability VIKINGv20151230 Epoch of measurement float 8 Years   time.epoch
The Variability table contains statistics from the set of observations of each source. At present, the mean ra and dec and the error in two tangential directions are calculated. The "ra" direction is defined as tangential to both the radial direction and the cartesian z-axis and the "dec" direction is defined as both the radial direction and the "ra" direction. Since the current model is just the mean and standard deviation of the data, then the chi-squared of the fit=1. Data from good frames across all bands go into the astrometric model determination. This will include bands in non-synoptic filters: the one observation in these bands can help. In future releases a fit will be made to the rms data as a function of magnitude in each band, as has already happened for photometric data and a motion model that incorporates proper motion (and possibly parallax) will be used. The motion model is a parameter in the VarFrameSetInfo table.
epoch vikingVariability VIKINGv20160406 Epoch of measurement float 8 Years   time.epoch
The Variability table contains statistics from the set of observations of each source. At present, the mean ra and dec and the error in two tangential directions are calculated. The "ra" direction is defined as tangential to both the radial direction and the cartesian z-axis and the "dec" direction is defined as both the radial direction and the "ra" direction. Since the current model is just the mean and standard deviation of the data, then the chi-squared of the fit=1. Data from good frames across all bands go into the astrometric model determination. This will include bands in non-synoptic filters: the one observation in these bands can help. In future releases a fit will be made to the rms data as a function of magnitude in each band, as has already happened for photometric data and a motion model that incorporates proper motion (and possibly parallax) will be used. The motion model is a parameter in the VarFrameSetInfo table.
epoch vikingVariability VIKINGv20161202 Epoch of measurement float 8 Years   time.epoch
The Variability table contains statistics from the set of observations of each source. At present, the mean ra and dec and the error in two tangential directions are calculated. The "ra" direction is defined as tangential to both the radial direction and the cartesian z-axis and the "dec" direction is defined as both the radial direction and the "ra" direction. Since the current model is just the mean and standard deviation of the data, then the chi-squared of the fit=1. Data from good frames across all bands go into the astrometric model determination. This will include bands in non-synoptic filters: the one observation in these bands can help. In future releases a fit will be made to the rms data as a function of magnitude in each band, as has already happened for photometric data and a motion model that incorporates proper motion (and possibly parallax) will be used. The motion model is a parameter in the VarFrameSetInfo table.
epoch vikingVariability VIKINGv20170715 Epoch of measurement float 8 Years   time.epoch
The Variability table contains statistics from the set of observations of each source. At present, the mean ra and dec and the error in two tangential directions are calculated. The "ra" direction is defined as tangential to both the radial direction and the cartesian z-axis and the "dec" direction is defined as both the radial direction and the "ra" direction. Since the current model is just the mean and standard deviation of the data, then the chi-squared of the fit=1. Data from good frames across all bands go into the astrometric model determination. This will include bands in non-synoptic filters: the one observation in these bands can help. In future releases a fit will be made to the rms data as a function of magnitude in each band, as has already happened for photometric data and a motion model that incorporates proper motion (and possibly parallax) will be used. The motion model is a parameter in the VarFrameSetInfo table.
epoch vikingVariability VIKINGv20181012 Epoch of measurement float 8 Years   time.epoch
The Variability table contains statistics from the set of observations of each source. At present, the mean ra and dec and the error in two tangential directions are calculated. The "ra" direction is defined as tangential to both the radial direction and the cartesian z-axis and the "dec" direction is defined as both the radial direction and the "ra" direction. Since the current model is just the mean and standard deviation of the data, then the chi-squared of the fit=1. Data from good frames across all bands go into the astrometric model determination. This will include bands in non-synoptic filters: the one observation in these bands can help. In future releases a fit will be made to the rms data as a function of magnitude in each band, as has already happened for photometric data and a motion model that incorporates proper motion (and possibly parallax) will be used. The motion model is a parameter in the VarFrameSetInfo table.
epoch vmcSourceRemeasurement VMCv20110816 Epoch of position measurement float 8 Years -0.9999995e9 time.epoch
epoch vmcSourceRemeasurement VMCv20110909 Epoch of position measurement float 8 Years -0.9999995e9 time.epoch
epoch vmcVariability VMCDR1 Epoch of measurement float 8 Years   time.epoch
The Variability table contains statistics from the set of observations of each source. At present, the mean ra and dec and the error in two tangential directions are calculated. The "ra" direction is defined as tangential to both the radial direction and the cartesian z-axis and the "dec" direction is defined as both the radial direction and the "ra" direction. Since the current model is just the mean and standard deviation of the data, then the chi-squared of the fit=1. Data from good frames across all bands go into the astrometric model determination. This will include bands in non-synoptic filters: the one observation in these bands can help. In future releases a fit will be made to the rms data as a function of magnitude in each band, as has already happened for photometric data and a motion model that incorporates proper motion (and possibly parallax) will be used. The motion model is a parameter in the VarFrameSetInfo table.
epoch vmcVariability VMCDR2 Epoch of measurement float 8 Years   time.epoch
The Variability table contains statistics from the set of observations of each source. At present, the mean ra and dec and the error in two tangential directions are calculated. The "ra" direction is defined as tangential to both the radial direction and the cartesian z-axis and the "dec" direction is defined as both the radial direction and the "ra" direction. Since the current model is just the mean and standard deviation of the data, then the chi-squared of the fit=1. Data from good frames across all bands go into the astrometric model determination. This will include bands in non-synoptic filters: the one observation in these bands can help. In future releases a fit will be made to the rms data as a function of magnitude in each band, as has already happened for photometric data and a motion model that incorporates proper motion (and possibly parallax) will be used. The motion model is a parameter in the VarFrameSetInfo table.
epoch vmcVariability VMCDR3 Epoch of measurement float 8 Years   time.epoch
The Variability table contains statistics from the set of observations of each source. At present, the mean ra and dec and the error in two tangential directions are calculated. The "ra" direction is defined as tangential to both the radial direction and the cartesian z-axis and the "dec" direction is defined as both the radial direction and the "ra" direction. Since the current model is just the mean and standard deviation of the data, then the chi-squared of the fit=1. Data from good frames across all bands go into the astrometric model determination. This will include bands in non-synoptic filters: the one observation in these bands can help. In future releases a fit will be made to the rms data as a function of magnitude in each band, as has already happened for photometric data and a motion model that incorporates proper motion (and possibly parallax) will be used. The motion model is a parameter in the VarFrameSetInfo table.
epoch vmcVariability VMCDR4 Epoch of measurement float 8 Years   time.epoch
The Variability table contains statistics from the set of observations of each source. At present, the mean ra and dec and the error in two tangential directions are calculated. The "ra" direction is defined as tangential to both the radial direction and the cartesian z-axis and the "dec" direction is defined as both the radial direction and the "ra" direction. Since the current model is just the mean and standard deviation of the data, then the chi-squared of the fit=1. Data from good frames across all bands go into the astrometric model determination. This will include bands in non-synoptic filters: the one observation in these bands can help. In future releases a fit will be made to the rms data as a function of magnitude in each band, as has already happened for photometric data and a motion model that incorporates proper motion (and possibly parallax) will be used. The motion model is a parameter in the VarFrameSetInfo table.
epoch vmcVariability VMCv20110816 Epoch of measurement float 8 Years   time.epoch
The Variability table contains statistics from the set of observations of each source. At present, the mean ra and dec and the error in two tangential directions are calculated. The "ra" direction is defined as tangential to both the radial direction and the cartesian z-axis and the "dec" direction is defined as both the radial direction and the "ra" direction. Since the current model is just the mean and standard deviation of the data, then the chi-squared of the fit=1. Data from good frames across all bands go into the astrometric model determination. This will include bands in non-synoptic filters: the one observation in these bands can help. In future releases a fit will be made to the rms data as a function of magnitude in each band, as has already happened for photometric data and a motion model that incorporates proper motion (and possibly parallax) will be used. The motion model is a parameter in the VarFrameSetInfo table.
epoch vmcVariability VMCv20110909 Epoch of measurement float 8 Years   time.epoch
The Variability table contains statistics from the set of observations of each source. At present, the mean ra and dec and the error in two tangential directions are calculated. The "ra" direction is defined as tangential to both the radial direction and the cartesian z-axis and the "dec" direction is defined as both the radial direction and the "ra" direction. Since the current model is just the mean and standard deviation of the data, then the chi-squared of the fit=1. Data from good frames across all bands go into the astrometric model determination. This will include bands in non-synoptic filters: the one observation in these bands can help. In future releases a fit will be made to the rms data as a function of magnitude in each band, as has already happened for photometric data and a motion model that incorporates proper motion (and possibly parallax) will be used. The motion model is a parameter in the VarFrameSetInfo table.
epoch vmcVariability VMCv20120126 Epoch of measurement float 8 Years   time.epoch
The Variability table contains statistics from the set of observations of each source. At present, the mean ra and dec and the error in two tangential directions are calculated. The "ra" direction is defined as tangential to both the radial direction and the cartesian z-axis and the "dec" direction is defined as both the radial direction and the "ra" direction. Since the current model is just the mean and standard deviation of the data, then the chi-squared of the fit=1. Data from good frames across all bands go into the astrometric model determination. This will include bands in non-synoptic filters: the one observation in these bands can help. In future releases a fit will be made to the rms data as a function of magnitude in each band, as has already happened for photometric data and a motion model that incorporates proper motion (and possibly parallax) will be used. The motion model is a parameter in the VarFrameSetInfo table.
epoch vmcVariability VMCv20121128 Epoch of measurement float 8 Years   time.epoch
The Variability table contains statistics from the set of observations of each source. At present, the mean ra and dec and the error in two tangential directions are calculated. The "ra" direction is defined as tangential to both the radial direction and the cartesian z-axis and the "dec" direction is defined as both the radial direction and the "ra" direction. Since the current model is just the mean and standard deviation of the data, then the chi-squared of the fit=1. Data from good frames across all bands go into the astrometric model determination. This will include bands in non-synoptic filters: the one observation in these bands can help. In future releases a fit will be made to the rms data as a function of magnitude in each band, as has already happened for photometric data and a motion model that incorporates proper motion (and possibly parallax) will be used. The motion model is a parameter in the VarFrameSetInfo table.
epoch vmcVariability VMCv20130304 Epoch of measurement float 8 Years   time.epoch
The Variability table contains statistics from the set of observations of each source. At present, the mean ra and dec and the error in two tangential directions are calculated. The "ra" direction is defined as tangential to both the radial direction and the cartesian z-axis and the "dec" direction is defined as both the radial direction and the "ra" direction. Since the current model is just the mean and standard deviation of the data, then the chi-squared of the fit=1. Data from good frames across all bands go into the astrometric model determination. This will include bands in non-synoptic filters: the one observation in these bands can help. In future releases a fit will be made to the rms data as a function of magnitude in each band, as has already happened for photometric data and a motion model that incorporates proper motion (and possibly parallax) will be used. The motion model is a parameter in the VarFrameSetInfo table.
epoch vmcVariability VMCv20130805 Epoch of measurement float 8 Years   time.epoch
The Variability table contains statistics from the set of observations of each source. At present, the mean ra and dec and the error in two tangential directions are calculated. The "ra" direction is defined as tangential to both the radial direction and the cartesian z-axis and the "dec" direction is defined as both the radial direction and the "ra" direction. Since the current model is just the mean and standard deviation of the data, then the chi-squared of the fit=1. Data from good frames across all bands go into the astrometric model determination. This will include bands in non-synoptic filters: the one observation in these bands can help. In future releases a fit will be made to the rms data as a function of magnitude in each band, as has already happened for photometric data and a motion model that incorporates proper motion (and possibly parallax) will be used. The motion model is a parameter in the VarFrameSetInfo table.
epoch vmcVariability VMCv20140428 Epoch of measurement float 8 Years   time.epoch
The Variability table contains statistics from the set of observations of each source. At present, the mean ra and dec and the error in two tangential directions are calculated. The "ra" direction is defined as tangential to both the radial direction and the cartesian z-axis and the "dec" direction is defined as both the radial direction and the "ra" direction. Since the current model is just the mean and standard deviation of the data, then the chi-squared of the fit=1. Data from good frames across all bands go into the astrometric model determination. This will include bands in non-synoptic filters: the one observation in these bands can help. In future releases a fit will be made to the rms data as a function of magnitude in each band, as has already happened for photometric data and a motion model that incorporates proper motion (and possibly parallax) will be used. The motion model is a parameter in the VarFrameSetInfo table.
epoch vmcVariability VMCv20140903 Epoch of measurement float 8 Years   time.epoch
The Variability table contains statistics from the set of observations of each source. At present, the mean ra and dec and the error in two tangential directions are calculated. The "ra" direction is defined as tangential to both the radial direction and the cartesian z-axis and the "dec" direction is defined as both the radial direction and the "ra" direction. Since the current model is just the mean and standard deviation of the data, then the chi-squared of the fit=1. Data from good frames across all bands go into the astrometric model determination. This will include bands in non-synoptic filters: the one observation in these bands can help. In future releases a fit will be made to the rms data as a function of magnitude in each band, as has already happened for photometric data and a motion model that incorporates proper motion (and possibly parallax) will be used. The motion model is a parameter in the VarFrameSetInfo table.
epoch vmcVariability VMCv20150309 Epoch of measurement float 8 Years   time.epoch
The Variability table contains statistics from the set of observations of each source. At present, the mean ra and dec and the error in two tangential directions are calculated. The "ra" direction is defined as tangential to both the radial direction and the cartesian z-axis and the "dec" direction is defined as both the radial direction and the "ra" direction. Since the current model is just the mean and standard deviation of the data, then the chi-squared of the fit=1. Data from good frames across all bands go into the astrometric model determination. This will include bands in non-synoptic filters: the one observation in these bands can help. In future releases a fit will be made to the rms data as a function of magnitude in each band, as has already happened for photometric data and a motion model that incorporates proper motion (and possibly parallax) will be used. The motion model is a parameter in the VarFrameSetInfo table.
epoch vmcVariability VMCv20151218 Epoch of measurement float 8 Years   time.epoch
The Variability table contains statistics from the set of observations of each source. At present, the mean ra and dec and the error in two tangential directions are calculated. The "ra" direction is defined as tangential to both the radial direction and the cartesian z-axis and the "dec" direction is defined as both the radial direction and the "ra" direction. Since the current model is just the mean and standard deviation of the data, then the chi-squared of the fit=1. Data from good frames across all bands go into the astrometric model determination. This will include bands in non-synoptic filters: the one observation in these bands can help. In future releases a fit will be made to the rms data as a function of magnitude in each band, as has already happened for photometric data and a motion model that incorporates proper motion (and possibly parallax) will be used. The motion model is a parameter in the VarFrameSetInfo table.
epoch vmcVariability VMCv20160311 Epoch of measurement float 8 Years   time.epoch
The Variability table contains statistics from the set of observations of each source. At present, the mean ra and dec and the error in two tangential directions are calculated. The "ra" direction is defined as tangential to both the radial direction and the cartesian z-axis and the "dec" direction is defined as both the radial direction and the "ra" direction. Since the current model is just the mean and standard deviation of the data, then the chi-squared of the fit=1. Data from good frames across all bands go into the astrometric model determination. This will include bands in non-synoptic filters: the one observation in these bands can help. In future releases a fit will be made to the rms data as a function of magnitude in each band, as has already happened for photometric data and a motion model that incorporates proper motion (and possibly parallax) will be used. The motion model is a parameter in the VarFrameSetInfo table.
epoch vmcVariability VMCv20160822 Epoch of measurement float 8 Years   time.epoch
The Variability table contains statistics from the set of observations of each source. At present, the mean ra and dec and the error in two tangential directions are calculated. The "ra" direction is defined as tangential to both the radial direction and the cartesian z-axis and the "dec" direction is defined as both the radial direction and the "ra" direction. Since the current model is just the mean and standard deviation of the data, then the chi-squared of the fit=1. Data from good frames across all bands go into the astrometric model determination. This will include bands in non-synoptic filters: the one observation in these bands can help. In future releases a fit will be made to the rms data as a function of magnitude in each band, as has already happened for photometric data and a motion model that incorporates proper motion (and possibly parallax) will be used. The motion model is a parameter in the VarFrameSetInfo table.
epoch vmcVariability VMCv20170109 Epoch of measurement float 8 Years   time.epoch
The Variability table contains statistics from the set of observations of each source. At present, the mean ra and dec and the error in two tangential directions are calculated. The "ra" direction is defined as tangential to both the radial direction and the cartesian z-axis and the "dec" direction is defined as both the radial direction and the "ra" direction. Since the current model is just the mean and standard deviation of the data, then the chi-squared of the fit=1. Data from good frames across all bands go into the astrometric model determination. This will include bands in non-synoptic filters: the one observation in these bands can help. In future releases a fit will be made to the rms data as a function of magnitude in each band, as has already happened for photometric data and a motion model that incorporates proper motion (and possibly parallax) will be used. The motion model is a parameter in the VarFrameSetInfo table.
epoch vmcVariability VMCv20170411 Epoch of measurement float 8 Years   time.epoch
The Variability table contains statistics from the set of observations of each source. At present, the mean ra and dec and the error in two tangential directions are calculated. The "ra" direction is defined as tangential to both the radial direction and the cartesian z-axis and the "dec" direction is defined as both the radial direction and the "ra" direction. Since the current model is just the mean and standard deviation of the data, then the chi-squared of the fit=1. Data from good frames across all bands go into the astrometric model determination. This will include bands in non-synoptic filters: the one observation in these bands can help. In future releases a fit will be made to the rms data as a function of magnitude in each band, as has already happened for photometric data and a motion model that incorporates proper motion (and possibly parallax) will be used. The motion model is a parameter in the VarFrameSetInfo table.
epoch vmcVariability VMCv20171101 Epoch of measurement float 8 Years   time.epoch
The Variability table contains statistics from the set of observations of each source. At present, the mean ra and dec and the error in two tangential directions are calculated. The "ra" direction is defined as tangential to both the radial direction and the cartesian z-axis and the "dec" direction is defined as both the radial direction and the "ra" direction. Since the current model is just the mean and standard deviation of the data, then the chi-squared of the fit=1. Data from good frames across all bands go into the astrometric model determination. This will include bands in non-synoptic filters: the one observation in these bands can help. In future releases a fit will be made to the rms data as a function of magnitude in each band, as has already happened for photometric data and a motion model that incorporates proper motion (and possibly parallax) will be used. The motion model is a parameter in the VarFrameSetInfo table.
epoch vmcVariability VMCv20180702 Epoch of measurement float 8 Years   time.epoch
The Variability table contains statistics from the set of observations of each source. At present, the mean ra and dec and the error in two tangential directions are calculated. The "ra" direction is defined as tangential to both the radial direction and the cartesian z-axis and the "dec" direction is defined as both the radial direction and the "ra" direction. Since the current model is just the mean and standard deviation of the data, then the chi-squared of the fit=1. Data from good frames across all bands go into the astrometric model determination. This will include bands in non-synoptic filters: the one observation in these bands can help. In future releases a fit will be made to the rms data as a function of magnitude in each band, as has already happened for photometric data and a motion model that incorporates proper motion (and possibly parallax) will be used. The motion model is a parameter in the VarFrameSetInfo table.
epoch vmcVariability VMCv20181120 Epoch of measurement float 8 Years   time.epoch
The Variability table contains statistics from the set of observations of each source. At present, the mean ra and dec and the error in two tangential directions are calculated. The "ra" direction is defined as tangential to both the radial direction and the cartesian z-axis and the "dec" direction is defined as both the radial direction and the "ra" direction. Since the current model is just the mean and standard deviation of the data, then the chi-squared of the fit=1. Data from good frames across all bands go into the astrometric model determination. This will include bands in non-synoptic filters: the one observation in these bands can help. In future releases a fit will be made to the rms data as a function of magnitude in each band, as has already happened for photometric data and a motion model that incorporates proper motion (and possibly parallax) will be used. The motion model is a parameter in the VarFrameSetInfo table.
epoch vvvVariability VVVDR4 Epoch of measurement float 8 Years   time.epoch
The Variability table contains statistics from the set of observations of each source. At present, the mean ra and dec and the error in two tangential directions are calculated. The "ra" direction is defined as tangential to both the radial direction and the cartesian z-axis and the "dec" direction is defined as both the radial direction and the "ra" direction. Since the current model is just the mean and standard deviation of the data, then the chi-squared of the fit=1. Data from good frames across all bands go into the astrometric model determination. This will include bands in non-synoptic filters: the one observation in these bands can help. In future releases a fit will be made to the rms data as a function of magnitude in each band, as has already happened for photometric data and a motion model that incorporates proper motion (and possibly parallax) will be used. The motion model is a parameter in the VarFrameSetInfo table.
epoch_g cepheid, rrlyrae GAIADR1 Epoch of the maximum of the light curve in the G band float 8 Barycentric JD in TCB - 2455197.5 days   time.epoch;stat.max
epoch_g_error cepheid, rrlyrae GAIADR1 Uncertainty on epoch of the maximum of the light curve in the G band float 8 days   stat.error;time.epoch
epochFrameType Programme VHSDR1 The frame type to be used for each epoch (stack, tile) varchar 16   NONE  
epochFrameType Programme VHSDR2 The frame type to be used for each epoch (stack, tile) varchar 16   NONE  
epochFrameType Programme VHSDR3 The frame type to be used for each epoch (stack, tile) varchar 16   NONE  
epochFrameType Programme VHSDR4 The frame type to be used for each epoch (stack, tile) varchar 16   NONE  
epochFrameType Programme VHSv20120926 The frame type to be used for each epoch (stack, tile) varchar 16   NONE  
epochFrameType Programme VHSv20130417 The frame type to be used for each epoch (stack, tile) varchar 16   NONE  
epochFrameType Programme VHSv20150108 The frame type to be used for each epoch (stack, tile) varchar 16   NONE  
epochFrameType Programme VHSv20160114 The frame type to be used for each epoch (stack, tile) varchar 16   NONE  
epochFrameType Programme VHSv20160507 The frame type to be used for each epoch (stack, tile) varchar 16   NONE  
epochFrameType Programme VHSv20170630 The frame type to be used for each epoch (stack, tile) varchar 16   NONE  
epochFrameType Programme VHSv20171207 The frame type to be used for each epoch (stack, tile) varchar 16   NONE  
epochFrameType Programme VHSv20180419 The frame type to be used for each epoch (stack, tile) varchar 16   NONE  
epochFrameType Programme VIDEODR2 The frame type to be used for each epoch (stack, tile) varchar 16   NONE  
epochFrameType Programme VIDEODR3 The frame type to be used for each epoch (stack, tile) varchar 16   NONE  
epochFrameType Programme VIDEODR4 The frame type to be used for each epoch (stack, tile) varchar 16   NONE  
epochFrameType Programme VIDEODR5 The frame type to be used for each epoch (stack, tile) varchar 16   NONE  
epochFrameType Programme VIDEOv20100513 The frame type to be used for each epoch (stack, tile) varchar 16   NONE  
epochFrameType Programme VIDEOv20111208 The frame type to be used for each epoch (stack, tile) varchar 16   NONE  
epochFrameType Programme VIKINGDR2 The frame type to be used for each epoch (stack, tile) varchar 16   NONE  
epochFrameType Programme VIKINGDR3 The frame type to be used for each epoch (stack, tile) varchar 16   NONE  
epochFrameType Programme VIKINGDR4 The frame type to be used for each epoch (stack, tile) varchar 16   NONE  
epochFrameType Programme VIKINGv20110714 The frame type to be used for each epoch (stack, tile) varchar 16   NONE  
epochFrameType Programme VIKINGv20111019 The frame type to be used for each epoch (stack, tile) varchar 16   NONE  
epochFrameType Programme VIKINGv20130417 The frame type to be used for each epoch (stack, tile) varchar 16   NONE  
epochFrameType Programme VIKINGv20150421 The frame type to be used for each epoch (stack, tile) varchar 16   NONE  
epochFrameType Programme VIKINGv20151230 The frame type to be used for each epoch (stack, tile) varchar 16   NONE  
epochFrameType Programme VIKINGv20160406 The frame type to be used for each epoch (stack, tile) varchar 16   NONE  
epochFrameType Programme VIKINGv20161202 The frame type to be used for each epoch (stack, tile) varchar 16   NONE  
epochFrameType Programme VIKINGv20170715 The frame type to be used for each epoch (stack, tile) varchar 16   NONE  
epochFrameType Programme VIKINGv20181012 The frame type to be used for each epoch (stack, tile) varchar 16   NONE  
epochFrameType Programme VMCDR1 The frame type to be used for each epoch (stack, tile) varchar 16   NONE  
epochFrameType Programme VMCDR3 The frame type to be used for each epoch (stack, tile) varchar 16   NONE  
epochFrameType Programme VMCDR4 The frame type to be used for each epoch (stack, tile) varchar 16   NONE  
epochFrameType Programme VMCv20110816 The frame type to be used for each epoch (stack, tile) varchar 16   NONE  
epochFrameType Programme VMCv20110909 The frame type to be used for each epoch (stack, tile) varchar 16   NONE  
epochFrameType Programme VMCv20120126 The frame type to be used for each epoch (stack, tile) varchar 16   NONE  
epochFrameType Programme VMCv20121128 The frame type to be used for each epoch (stack, tile) varchar 16   NONE  
epochFrameType Programme VMCv20130304 The frame type to be used for each epoch (stack, tile) varchar 16   NONE  
epochFrameType Programme VMCv20130805 The frame type to be used for each epoch (stack, tile) varchar 16   NONE  
epochFrameType Programme VMCv20140428 The frame type to be used for each epoch (stack, tile) varchar 16   NONE  
epochFrameType Programme VMCv20140903 The frame type to be used for each epoch (stack, tile) varchar 16   NONE  
epochFrameType Programme VMCv20150309 The frame type to be used for each epoch (stack, tile) varchar 16   NONE  
epochFrameType Programme VMCv20151218 The frame type to be used for each epoch (stack, tile) varchar 16   NONE  
epochFrameType Programme VMCv20160311 The frame type to be used for each epoch (stack, tile) varchar 16   NONE  
epochFrameType Programme VMCv20160822 The frame type to be used for each epoch (stack, tile) varchar 16   NONE  
epochFrameType Programme VMCv20170109 The frame type to be used for each epoch (stack, tile) varchar 16   NONE  
epochFrameType Programme VMCv20170411 The frame type to be used for each epoch (stack, tile) varchar 16   NONE  
epochFrameType Programme VMCv20171101 The frame type to be used for each epoch (stack, tile) varchar 16   NONE  
epochFrameType Programme VMCv20180702 The frame type to be used for each epoch (stack, tile) varchar 16   NONE  
epochFrameType Programme VMCv20181120 The frame type to be used for each epoch (stack, tile) varchar 16   NONE  
epochFrameType Programme VSAQC The frame type to be used for each epoch (stack, tile) varchar 16   NONE  
epochFrameType Programme VVVDR4 The frame type to be used for each epoch (stack, tile) varchar 16   NONE  
epochMax ogle4CepLmcSource, ogle4CepSmcSource, ogle4RRLyrLmcSource, ogle4RRLyrSmcSource OGLE Time of maximum brightness (HJD-2450000) float 8 days   time.epoch
epochMax vmcRRlyraeVariables VMCDR4 Epoch of maximum light; EROS, (HJD-2,450,000) from the OGLE III catalogue. {catalogue TType keyword: EPOCH_MAX} real 4 day   time.epoch
epochMax vmcRRlyraeVariables VMCv20160822 Epoch of maximum light; EROS, (HJD-2,450,000) from the OGLE III catalogue. {catalogue TType keyword: EPOCH_MAX} real 4 day   time.epoch
epochMax vmcRRlyraeVariables VMCv20170109 Epoch of maximum light; EROS, (HJD-2,450,000) from the OGLE III catalogue. {catalogue TType keyword: EPOCH_MAX} real 4 day   time.epoch
epochMax vmcRRlyraeVariables VMCv20170411 Epoch of maximum light; EROS, (HJD-2,450,000) from the OGLE III catalogue. {catalogue TType keyword: EPOCH_MAX} real 4 day   time.epoch
epochMax vmcRRlyraeVariables VMCv20171101 Epoch of maximum light; EROS, (HJD-2,450,000) from the OGLE III catalogue. {catalogue TType keyword: EPOCH_MAX} real 4 day   time.epoch
epochMax vmcRRlyraeVariables VMCv20180702 Epoch of maximum light; EROS, (HJD-2,450,000) from the OGLE III catalogue. {catalogue TType keyword: EPOCH_MAX} real 4 day   time.epoch
epochMax vmcRRlyraeVariables VMCv20181120 Epoch of maximum light; EROS, (HJD-2,450,000) from the OGLE III catalogue. {catalogue TType keyword: EPOCH_MAX} real 4 day   time.epoch
epochMin vmcEclipsingBinaryVariables VMCDR4 Epoch of minimum light; EROS, (HJD-2,400,000) determined by GRATIS in EROS R passband; OGLE (JD-2,400,000) from the OGLE III catalogue. {catalogue TType keyword: EPOCH_MIN} real 4 day   time.epoch
epochMin vmcEclipsingBinaryVariables VMCv20140903 Epoch of minimum light; EROS, (HJD-2,400,000) determined by GRATIS in EROS R passband; OGLE (JD-2,400,000) from the OGLE III catalogue. {catalogue TType keyword: EPOCH_MIN} real 4 day   time.epoch
epochMin vmcEclipsingBinaryVariables VMCv20150309 Epoch of minimum light; EROS, (HJD-2,400,000) determined by GRATIS in EROS R passband; OGLE (JD-2,400,000) from the OGLE III catalogue. {catalogue TType keyword: EPOCH_MIN} real 4 day   time.epoch
epochMin vmcEclipsingBinaryVariables VMCv20151218 Epoch of minimum light; EROS, (HJD-2,400,000) determined by GRATIS in EROS R passband; OGLE (JD-2,400,000) from the OGLE III catalogue. {catalogue TType keyword: EPOCH_MIN} real 4 day   time.epoch
epochMin vmcEclipsingBinaryVariables VMCv20160311 Epoch of minimum light; EROS, (HJD-2,400,000) determined by GRATIS in EROS R passband; OGLE (JD-2,400,000) from the OGLE III catalogue. {catalogue TType keyword: EPOCH_MIN} real 4 day   time.epoch
epochMin vmcEclipsingBinaryVariables VMCv20160822 Epoch of minimum light; EROS, (HJD-2,400,000) determined by GRATIS in EROS R passband; OGLE (JD-2,400,000) from the OGLE III catalogue. {catalogue TType keyword: EPOCH_MIN} real 4 day   time.epoch
epochMin vmcEclipsingBinaryVariables VMCv20170109 Epoch of minimum light; EROS, (HJD-2,400,000) determined by GRATIS in EROS R passband; OGLE (JD-2,400,000) from the OGLE III catalogue. {catalogue TType keyword: EPOCH_MIN} real 4 day   time.epoch
epochMin vmcEclipsingBinaryVariables VMCv20170411 Epoch of minimum light; EROS, (HJD-2,400,000) determined by GRATIS in EROS R passband; OGLE (JD-2,400,000) from the OGLE III catalogue. {catalogue TType keyword: EPOCH_MIN} real 4 day   time.epoch
epochMin vmcEclipsingBinaryVariables VMCv20171101 Epoch of minimum light; EROS, (HJD-2,400,000) determined by GRATIS in EROS R passband; OGLE (JD-2,400,000) from the OGLE III catalogue. {catalogue TType keyword: EPOCH_MIN} real 4 day   time.epoch
epochMin vmcEclipsingBinaryVariables VMCv20180702 Epoch of minimum light; EROS, (HJD-2,400,000) determined by GRATIS in EROS R passband; OGLE (JD-2,400,000) from the OGLE III catalogue. {catalogue TType keyword: EPOCH_MIN} real 4 day   time.epoch
epochMin vmcEclipsingBinaryVariables VMCv20181120 Epoch of minimum light; EROS, (HJD-2,400,000) determined by GRATIS in EROS R passband; OGLE (JD-2,400,000) from the OGLE III catalogue. {catalogue TType keyword: EPOCH_MIN} real 4 day   time.epoch
epochs vvvParallaxCatalogue, vvvProperMotionCatalogue VVVDR4 the total number of epochs across all pawprint sets used by the VIRAC pipeline {catalogue TType keyword: epochs} int 4   -99999999  
epochTolerance Programme VHSv20160114 Minimum separation of epochs for proper motion calculation real 4 days -0.9999995e9 ??
epochTolerance Programme VHSv20160507 Minimum separation of epochs for proper motion calculation real 4 days -0.9999995e9 ??
epochTolerance Programme VHSv20170630 Minimum separation of epochs for proper motion calculation real 4 days -0.9999995e9 ??
epochTolerance Programme VHSv20171207 Minimum separation of epochs for proper motion calculation real 4 days -0.9999995e9 ??
epochTolerance Programme VHSv20180419 Minimum separation of epochs for proper motion calculation real 4 days -0.9999995e9 ??
epochTolerance Programme VIKINGv20151230 Minimum separation of epochs for proper motion calculation real 4 days -0.9999995e9 ??
epochTolerance Programme VIKINGv20160406 Minimum separation of epochs for proper motion calculation real 4 days -0.9999995e9 ??
epochTolerance Programme VIKINGv20161202 Minimum separation of epochs for proper motion calculation real 4 days -0.9999995e9 ??
epochTolerance Programme VIKINGv20170715 Minimum separation of epochs for proper motion calculation real 4 days -0.9999995e9 ??
epochTolerance Programme VIKINGv20181012 Minimum separation of epochs for proper motion calculation real 4 days -0.9999995e9 ??
epochTolerance Programme VMCDR4 Minimum separation of epochs for proper motion calculation real 4 days -0.9999995e9 ??
epochTolerance Programme VMCv20151218 Minimum separation of epochs for proper motion calculation real 4 days -0.9999995e9 ??
epochTolerance Programme VMCv20160311 Minimum separation of epochs for proper motion calculation real 4 days -0.9999995e9 ??
epochTolerance Programme VMCv20160822 Minimum separation of epochs for proper motion calculation real 4 days -0.9999995e9 ??
epochTolerance Programme VMCv20170109 Minimum separation of epochs for proper motion calculation real 4 days -0.9999995e9 ??
epochTolerance Programme VMCv20170411 Minimum separation of epochs for proper motion calculation real 4 days -0.9999995e9 ??
epochTolerance Programme VMCv20171101 Minimum separation of epochs for proper motion calculation real 4 days -0.9999995e9 ??
epochTolerance Programme VMCv20180702 Minimum separation of epochs for proper motion calculation real 4 days -0.9999995e9 ??
epochTolerance Programme VMCv20181120 Minimum separation of epochs for proper motion calculation real 4 days -0.9999995e9 ??
epochTolerance Programme VSAQC Minimum separation of epochs for proper motion calculation real 4 days -0.9999995e9 ??
epochTolerance Programme VVVDR4 Minimum separation of epochs for proper motion calculation real 4 days -0.9999995e9 ??
equinox Multiframe VHSDR1 Equinox of object position (Standard FK5) {image primary HDU keyword: EQUINOX} real 4 years -0.9999995e9 time.equinox
equinox Multiframe VHSDR2 Equinox of object position (Standard FK5) {image primary HDU keyword: EQUINOX} real 4 years -0.9999995e9 time.equinox
equinox Multiframe VHSDR3 Equinox of object position (Standard FK5) {image primary HDU keyword: EQUINOX} real 4 years -0.9999995e9 time.equinox
equinox Multiframe VHSDR4 Equinox of object position (Standard FK5) {image primary HDU keyword: EQUINOX} real 4 years -0.9999995e9 time.equinox
equinox Multiframe VHSv20120926 Equinox of object position (Standard FK5) {image primary HDU keyword: EQUINOX} real 4 years -0.9999995e9 time.equinox
equinox Multiframe VHSv20130417 Equinox of object position (Standard FK5) {image primary HDU keyword: EQUINOX} real 4 years -0.9999995e9 time.equinox
equinox Multiframe VHSv20140409 Equinox of object position (Standard FK5) {image primary HDU keyword: EQUINOX} real 4 years -0.9999995e9 time.equinox
equinox Multiframe VHSv20150108 Equinox of object position (Standard FK5) {image primary HDU keyword: EQUINOX} real 4 years -0.9999995e9 time.equinox
equinox Multiframe VHSv20160114 Equinox of object position (Standard FK5) {image primary HDU keyword: EQUINOX} real 4 years -0.9999995e9 time.equinox
equinox Multiframe VHSv20160507 Equinox of object position (Standard FK5) {image primary HDU keyword: EQUINOX} real 4 years -0.9999995e9 time.equinox
equinox Multiframe VHSv20170630 Equinox of object position (Standard FK5) {image primary HDU keyword: EQUINOX} real 4 years -0.9999995e9 time.equinox
equinox Multiframe VHSv20171207 Equinox of object position (Standard FK5) {image primary HDU keyword: EQUINOX} real 4 years -0.9999995e9 time.equinox
equinox Multiframe VHSv20180419 Equinox of object position (Standard FK5) {image primary HDU keyword: EQUINOX} real 4 years -0.9999995e9 time.equinox
equinox Multiframe VIDEODR2 Equinox of object position (Standard FK5) {image primary HDU keyword: EQUINOX} real 4 years -0.9999995e9 time.equinox
equinox Multiframe VIDEODR3 Equinox of object position (Standard FK5) {image primary HDU keyword: EQUINOX} real 4 years -0.9999995e9 time.equinox
equinox Multiframe VIDEODR4 Equinox of object position (Standard FK5) {image primary HDU keyword: EQUINOX} real 4 years -0.9999995e9 time.equinox
equinox Multiframe VIDEODR5 Equinox of object position (Standard FK5) {image primary HDU keyword: EQUINOX} real 4 years -0.9999995e9 time.equinox
equinox Multiframe VIDEOv20100513 Equinox of object position (Standard FK5) {image primary HDU keyword: EQUINOX} real 4 years -0.9999995e9 time.equinox
equinox Multiframe VIDEOv20111208 Equinox of object position (Standard FK5) {image primary HDU keyword: EQUINOX} real 4 years -0.9999995e9 time.equinox
equinox Multiframe VIKINGDR2 Equinox of object position (Standard FK5) {image primary HDU keyword: EQUINOX} real 4 years -0.9999995e9 time.equinox
equinox Multiframe VIKINGDR3 Equinox of object position (Standard FK5) {image primary HDU keyword: EQUINOX} real 4 years -0.9999995e9 time.equinox
equinox Multiframe VIKINGDR4 Equinox of object position (Standard FK5) {image primary HDU keyword: EQUINOX} real 4 years -0.9999995e9 time.equinox
equinox Multiframe VIKINGv20110714 Equinox of object position (Standard FK5) {image primary HDU keyword: EQUINOX} real 4 years -0.9999995e9 time.equinox
equinox Multiframe VIKINGv20111019 Equinox of object position (Standard FK5) {image primary HDU keyword: EQUINOX} real 4 years -0.9999995e9 time.equinox
equinox Multiframe VIKINGv20130417 Equinox of object position (Standard FK5) {image primary HDU keyword: EQUINOX} real 4 years -0.9999995e9 time.equinox
equinox Multiframe VIKINGv20140402 Equinox of object position (Standard FK5) {image primary HDU keyword: EQUINOX} real 4 years -0.9999995e9 time.equinox
equinox Multiframe VIKINGv20150421 Equinox of object position (Standard FK5) {image primary HDU keyword: EQUINOX} real 4 years -0.9999995e9 time.equinox
equinox Multiframe VIKINGv20151230 Equinox of object position (Standard FK5) {image primary HDU keyword: EQUINOX} real 4 years -0.9999995e9 time.equinox
equinox Multiframe VIKINGv20160406 Equinox of object position (Standard FK5) {image primary HDU keyword: EQUINOX} real 4 years -0.9999995e9 time.equinox
equinox Multiframe VIKINGv20161202 Equinox of object position (Standard FK5) {image primary HDU keyword: EQUINOX} real 4 years -0.9999995e9 time.equinox
equinox Multiframe VIKINGv20170715 Equinox of object position (Standard FK5) {image primary HDU keyword: EQUINOX} real 4 years -0.9999995e9 time.equinox
equinox Multiframe VIKINGv20181012 Equinox of object position (Standard FK5) {image primary HDU keyword: EQUINOX} real 4 years -0.9999995e9 time.equinox
equinox Multiframe VMCDR1 Equinox of object position (Standard FK5) {image primary HDU keyword: EQUINOX} real 4 years -0.9999995e9 time.equinox
equinox Multiframe VMCDR2 Equinox of object position (Standard FK5) {image primary HDU keyword: EQUINOX} real 4 years -0.9999995e9 time.equinox
equinox Multiframe VMCDR3 Equinox of object position (Standard FK5) {image primary HDU keyword: EQUINOX} real 4 years -0.9999995e9 time.equinox
equinox Multiframe VMCDR4 Equinox of object position (Standard FK5) {image primary HDU keyword: EQUINOX} real 4 years -0.9999995e9 time.equinox
equinox Multiframe VMCv20110816 Equinox of object position (Standard FK5) {image primary HDU keyword: EQUINOX} real 4 years -0.9999995e9 time.equinox
equinox Multiframe VMCv20110909 Equinox of object position (Standard FK5) {image primary HDU keyword: EQUINOX} real 4 years -0.9999995e9 time.equinox
equinox Multiframe VMCv20120126 Equinox of object position (Standard FK5) {image primary HDU keyword: EQUINOX} real 4 years -0.9999995e9 time.equinox
equinox Multiframe VMCv20121128 Equinox of object position (Standard FK5) {image primary HDU keyword: EQUINOX} real 4 years -0.9999995e9 time.equinox
equinox Multiframe VMCv20130304 Equinox of object position (Standard FK5) {image primary HDU keyword: EQUINOX} real 4 years -0.9999995e9 time.equinox
equinox Multiframe VMCv20130805 Equinox of object position (Standard FK5) {image primary HDU keyword: EQUINOX} real 4 years -0.9999995e9 time.equinox
equinox Multiframe VMCv20140428 Equinox of object position (Standard FK5) {image primary HDU keyword: EQUINOX} real 4 years -0.9999995e9 time.equinox
equinox Multiframe VMCv20140903 Equinox of object position (Standard FK5) {image primary HDU keyword: EQUINOX} real 4 years -0.9999995e9 time.equinox
equinox Multiframe VMCv20150309 Equinox of object position (Standard FK5) {image primary HDU keyword: EQUINOX} real 4 years -0.9999995e9 time.equinox
equinox Multiframe VMCv20151218 Equinox of object position (Standard FK5) {image primary HDU keyword: EQUINOX} real 4 years -0.9999995e9 time.equinox
equinox Multiframe VMCv20160311 Equinox of object position (Standard FK5) {image primary HDU keyword: EQUINOX} real 4 years -0.9999995e9 time.equinox
equinox Multiframe VMCv20160822 Equinox of object position (Standard FK5) {image primary HDU keyword: EQUINOX} real 4 years -0.9999995e9 time.equinox
equinox Multiframe VMCv20170109 Equinox of object position (Standard FK5) {image primary HDU keyword: EQUINOX} real 4 years -0.9999995e9 time.equinox
equinox Multiframe VMCv20170411 Equinox of object position (Standard FK5) {image primary HDU keyword: EQUINOX} real 4 years -0.9999995e9 time.equinox
equinox Multiframe VMCv20171101 Equinox of object position (Standard FK5) {image primary HDU keyword: EQUINOX} real 4 years -0.9999995e9 time.equinox
equinox Multiframe VMCv20180702 Equinox of object position (Standard FK5) {image primary HDU keyword: EQUINOX} real 4 years -0.9999995e9 time.equinox
equinox Multiframe VMCv20181120 Equinox of object position (Standard FK5) {image primary HDU keyword: EQUINOX} real 4 years -0.9999995e9 time.equinox
equinox Multiframe VVVDR4 Equinox of object position (Standard FK5) {image primary HDU keyword: EQUINOX} real 4 years -0.9999995e9 time.equinox
equinox ultravistaMultiframe, vhsMultiframe, videoMultiframe, vikingMultiframe, vmcMultiframe, vvvMultiframe VSAQC Equinox of object position (Standard FK5) real 4 years -0.9999995e9 time.equinox
erapm vvvParallaxCatalogue, vvvProperMotionCatalogue VVVDR4 Error on RA (cosDec) component of proper motion {catalogue TType keyword: erapm} float 8 mas/yr -999999500.0  
erosid eros2LMCSource, eros2SMCSource, erosLMCSource, erosSMCSource EROS EROS star identification varchar 24      
erpmag_APASSDR9 ravedr5Source RAVE r' magnitude from APASSDR9 real 4 mag   stat.error;phot.mag;em.opt
err_ang twomass_psc TWOMASS Position angle on the sky of the semi-major axis of the position uncertainty ellipse (East of North) smallint 2 degrees   pos.posAng
err_ang twomass_sixx2_psc TWOMASS angle of error ellipse major axis (E of N) smallint 2 deg    
err_maj twomass_psc TWOMASS Semi-major axis length of the one sigma position uncertainty ellipse real 4 arcsec   phys.angSize;src
err_maj twomass_sixx2_psc TWOMASS major axis of 1-sigma error ellipse real 4 arcsec    
err_min twomass_psc TWOMASS Semi-minor axis length of the one sigma position uncertainty ellipse real 4 arcsec   phys.angSize;src
err_min twomass_sixx2_psc TWOMASS minor axis of 1-sigma error ellipse real 4 arcsec    
ERRA_IMAGE mgcDetection MGC Position error along major axis real 4 pixel    
ERRB_IMAGE mgcDetection MGC Position error along minor axis real 4 pixel    
errBits vhsDetection VHSDR1 processing warning/error bitwise flags {catalogue TType keyword: Error_bit_flag} int 4     meta.code
Apparently not actually an error bit flag, but a count of the number of zero confidence pixels in the default (2 arcsec diameter) aperture.
errBits vhsDetection VHSDR2 processing warning/error bitwise flags {catalogue TType keyword: Error_bit_flag} int 4     meta.code
Apparently not actually an error bit flag, but a count of the number of zero confidence pixels in the default (2 arcsec diameter) aperture.
errBits vhsDetection VHSDR3 processing warning/error bitwise flags {catalogue TType keyword: Error_bit_flag} int 4     meta.code
Apparently not actually an error bit flag, but a count of the number of zero confidence pixels in the default (2 arcsec diameter) aperture.
errBits vhsDetection VHSDR4 processing warning/error bitwise flags {catalogue TType keyword: Error_bit_flag} int 4     meta.code
Apparently not actually an error bit flag, but a count of the number of zero confidence pixels in the default (2 arcsec diameter) aperture.
errBits vhsDetection VHSv20120926 processing warning/error bitwise flags {catalogue TType keyword: Error_bit_flag} int 4     meta.code
Apparently not actually an error bit flag, but a count of the number of zero confidence pixels in the default (2 arcsec diameter) aperture.
errBits vhsDetection VHSv20130417 processing warning/error bitwise flags {catalogue TType keyword: Error_bit_flag} int 4     meta.code
Apparently not actually an error bit flag, but a count of the number of zero confidence pixels in the default (2 arcsec diameter) aperture.
errBits vhsDetection VHSv20140409 processing warning/error bitwise flags {catalogue TType keyword: Error_bit_flag} int 4     meta.code
Apparently not actually an error bit flag, but a count of the number of zero confidence pixels in the default (2 arcsec diameter) aperture.
errBits vhsDetection VHSv20150108 processing warning/error bitwise flags {catalogue TType keyword: Error_bit_flag} int 4     meta.code
Apparently not actually an error bit flag, but a count of the number of zero confidence pixels in the default (2 arcsec diameter) aperture.
errBits vhsDetection VHSv20160114 processing warning/error bitwise flags {catalogue TType keyword: Error_bit_flag} int 4     meta.code
Apparently not actually an error bit flag, but a count of the number of zero confidence pixels in the default (2 arcsec diameter) aperture.
errBits vhsDetection VHSv20160507 processing warning/error bitwise flags {catalogue TType keyword: Error_bit_flag} int 4     meta.code
Apparently not actually an error bit flag, but a count of the number of zero confidence pixels in the default (2 arcsec diameter) aperture.
errBits vhsDetection VHSv20170630 processing warning/error bitwise flags {catalogue TType keyword: Error_bit_flag} int 4     meta.code
Apparently not actually an error bit flag, but a count of the number of zero confidence pixels in the default (2 arcsec diameter) aperture.
errBits vhsDetection VHSv20171207 processing warning/error bitwise flags {catalogue TType keyword: Error_bit_flag} int 4     meta.code
Apparently not actually an error bit flag, but a count of the number of zero confidence pixels in the default (2 arcsec diameter) aperture.
errBits vhsDetection VHSv20180419 processing warning/error bitwise flags {catalogue TType keyword: Error_bit_flag} int 4     meta.code
Apparently not actually an error bit flag, but a count of the number of zero confidence pixels in the default (2 arcsec diameter) aperture.
errBits vhsListRemeasurement VHSDR1 processing warning/error bitwise flags {catalogue TType keyword: Error_bit_flag} int 4     meta.code
errBits videoDetection VIDEODR2 processing warning/error bitwise flags {catalogue TType keyword: Error_bit_flag} int 4     meta.code
This uses the FLAGS attribute in SE. The individual bit flags that this can be decomposed into are as follows:
Bit FlagMeaning
1The object has neighbours, bright enough and close enough to significantly bias the MAG_AUTO photometry or bad pixels (more than 10% of photometry affected).
2The object was originally blended with another
4At least one pixel is saturated (or very close to)
8The object is truncated (too close to an image boundary)
16Object's aperture data are incomplete or corrupted
32Object's isophotal data are imcomplete or corrupted. This is an old flag inherited from SE v1.0, and is kept for compatability reasons. It doesn't have any consequence for the extracted parameters.
64Memory overflow occurred during deblending
128Memory overflow occurred during extraction

errBits videoDetection VIDEODR3 processing warning/error bitwise flags {catalogue TType keyword: Error_bit_flag} int 4     meta.code
This uses the FLAGS attribute in SE. The individual bit flags that this can be decomposed into are as follows:
Bit FlagMeaning
1The object has neighbours, bright enough and close enough to significantly bias the MAG_AUTO photometry or bad pixels (more than 10% of photometry affected).
2The object was originally blended with another
4At least one pixel is saturated (or very close to)
8The object is truncated (too close to an image boundary)
16Object's aperture data are incomplete or corrupted
32Object's isophotal data are imcomplete or corrupted. This is an old flag inherited from SE v1.0, and is kept for compatability reasons. It doesn't have any consequence for the extracted parameters.
64Memory overflow occurred during deblending
128Memory overflow occurred during extraction

errBits videoDetection VIDEODR4 processing warning/error bitwise flags {catalogue TType keyword: Error_bit_flag} int 4     meta.code
This uses the FLAGS attribute in SE. The individual bit flags that this can be decomposed into are as follows:
Bit FlagMeaning
1The object has neighbours, bright enough and close enough to significantly bias the MAG_AUTO photometry or bad pixels (more than 10% of photometry affected).
2The object was originally blended with another
4At least one pixel is saturated (or very close to)
8The object is truncated (too close to an image boundary)
16Object's aperture data are incomplete or corrupted
32Object's isophotal data are imcomplete or corrupted. This is an old flag inherited from SE v1.0, and is kept for compatability reasons. It doesn't have any consequence for the extracted parameters.
64Memory overflow occurred during deblending
128Memory overflow occurred during extraction

errBits videoDetection VIDEODR5 processing warning/error bitwise flags {catalogue TType keyword: Error_bit_flag} int 4     meta.code
This uses the FLAGS attribute in SE. The individual bit flags that this can be decomposed into are as follows:
Bit FlagMeaning
1The object has neighbours, bright enough and close enough to significantly bias the MAG_AUTO photometry or bad pixels (more than 10% of photometry affected).
2The object was originally blended with another
4At least one pixel is saturated (or very close to)
8The object is truncated (too close to an image boundary)
16Object's aperture data are incomplete or corrupted
32Object's isophotal data are imcomplete or corrupted. This is an old flag inherited from SE v1.0, and is kept for compatability reasons. It doesn't have any consequence for the extracted parameters.
64Memory overflow occurred during deblending
128Memory overflow occurred during extraction

errBits videoDetection VIDEOv20100513 processing warning/error bitwise flags {catalogue TType keyword: Error_bit_flag} int 4     meta.code
This uses the FLAGS attribute in SE. The individual bit flags that this can be decomposed into are as follows:
Bit FlagMeaning
1The object has neighbours, bright enough and close enough to significantly bias the MAG_AUTO photometry or bad pixels (more than 10% of photometry affected).
2The object was originally blended with another
4At least one pixel is saturated (or very close to)
8The object is truncated (too close to an image boundary)
16Object's aperture data are incomplete or corrupted
32Object's isophotal data are imcomplete or corrupted. This is an old flag inherited from SE v1.0, and is kept for compatability reasons. It doesn't have any consequence for the extracted parameters.
64Memory overflow occurred during deblending
128Memory overflow occurred during extraction

errBits videoDetection VIDEOv20111208 processing warning/error bitwise flags {catalogue TType keyword: Error_bit_flag} int 4     meta.code
This uses the FLAGS attribute in SE. The individual bit flags that this can be decomposed into are as follows:
Bit FlagMeaning
1The object has neighbours, bright enough and close enough to significantly bias the MAG_AUTO photometry or bad pixels (more than 10% of photometry affected).
2The object was originally blended with another
4At least one pixel is saturated (or very close to)
8The object is truncated (too close to an image boundary)
16Object's aperture data are incomplete or corrupted
32Object's isophotal data are imcomplete or corrupted. This is an old flag inherited from SE v1.0, and is kept for compatability reasons. It doesn't have any consequence for the extracted parameters.
64Memory overflow occurred during deblending
128Memory overflow occurred during extraction

errBits videoListRemeasurement VIDEOv20100513 processing warning/error bitwise flags {catalogue TType keyword: Error_bit_flag} int 4     meta.code
errBits vikingDetection VIKINGDR2 processing warning/error bitwise flags {catalogue TType keyword: Error_bit_flag} int 4     meta.code
Apparently not actually an error bit flag, but a count of the number of zero confidence pixels in the default (2 arcsec diameter) aperture.
errBits vikingDetection VIKINGDR3 processing warning/error bitwise flags {catalogue TType keyword: Error_bit_flag} int 4     meta.code
Apparently not actually an error bit flag, but a count of the number of zero confidence pixels in the default (2 arcsec diameter) aperture.
errBits vikingDetection VIKINGDR4 processing warning/error bitwise flags {catalogue TType keyword: Error_bit_flag} int 4     meta.code
Apparently not actually an error bit flag, but a count of the number of zero confidence pixels in the default (2 arcsec diameter) aperture.
errBits vikingDetection VIKINGv20110714 processing warning/error bitwise flags {catalogue TType keyword: Error_bit_flag} int 4     meta.code
Apparently not actually an error bit flag, but a count of the number of zero confidence pixels in the default (2 arcsec diameter) aperture.
errBits vikingDetection VIKINGv20111019 processing warning/error bitwise flags {catalogue TType keyword: Error_bit_flag} int 4     meta.code
Apparently not actually an error bit flag, but a count of the number of zero confidence pixels in the default (2 arcsec diameter) aperture.
errBits vikingDetection VIKINGv20130417 processing warning/error bitwise flags {catalogue TType keyword: Error_bit_flag} int 4     meta.code
Apparently not actually an error bit flag, but a count of the number of zero confidence pixels in the default (2 arcsec diameter) aperture.
errBits vikingDetection VIKINGv20140402 processing warning/error bitwise flags {catalogue TType keyword: Error_bit_flag} int 4     meta.code
Apparently not actually an error bit flag, but a count of the number of zero confidence pixels in the default (2 arcsec diameter) aperture.
errBits vikingDetection VIKINGv20150421 processing warning/error bitwise flags {catalogue TType keyword: Error_bit_flag} int 4     meta.code
Apparently not actually an error bit flag, but a count of the number of zero confidence pixels in the default (2 arcsec diameter) aperture.
errBits vikingDetection VIKINGv20151230 processing warning/error bitwise flags {catalogue TType keyword: Error_bit_flag} int 4     meta.code
Apparently not actually an error bit flag, but a count of the number of zero confidence pixels in the default (2 arcsec diameter) aperture.
errBits vikingDetection VIKINGv20160406 processing warning/error bitwise flags {catalogue TType keyword: Error_bit_flag} int 4     meta.code
Apparently not actually an error bit flag, but a count of the number of zero confidence pixels in the default (2 arcsec diameter) aperture.
errBits vikingDetection VIKINGv20161202 processing warning/error bitwise flags {catalogue TType keyword: Error_bit_flag} int 4     meta.code
Apparently not actually an error bit flag, but a count of the number of zero confidence pixels in the default (2 arcsec diameter) aperture.
errBits vikingDetection VIKINGv20170715 processing warning/error bitwise flags {catalogue TType keyword: Error_bit_flag} int 4     meta.code
Apparently not actually an error bit flag, but a count of the number of zero confidence pixels in the default (2 arcsec diameter) aperture.
errBits vikingDetection VIKINGv20181012 processing warning/error bitwise flags {catalogue TType keyword: Error_bit_flag} int 4     meta.code
Apparently not actually an error bit flag, but a count of the number of zero confidence pixels in the default (2 arcsec diameter) aperture.
errBits vikingListRemeasurement VIKINGv20110714 processing warning/error bitwise flags {catalogue TType keyword: Error_bit_flag} int 4     meta.code
errBits vikingListRemeasurement VIKINGv20111019 processing warning/error bitwise flags {catalogue TType keyword: Error_bit_flag} int 4     meta.code
errBits vikingMapRemeasurement VIKINGZYSELJv20160909 processing warning/error bitwise flags {catalogue TType keyword: Error_bit_flag} int 4     meta.code
This uses the FLAGS attribute in SE. The individual bit flags that this can be decomposed into are as follows:
Bit FlagMeaning
1The object has neighbours, bright enough and close enough to significantly bias the MAG_AUTO photometry or bad pixels (more than 10% of photometry affected).
2The object was originally blended with another
4At least one pixel is saturated (or very close to)
8The object is truncated (too close to an image boundary)
16Object's aperture data are incomplete or corrupted
32Object's isophotal data are imcomplete or corrupted. This is an old flag inherited from SE v1.0, and is kept for compatability reasons. It doesn't have any consequence for the extracted parameters.
64Memory overflow occurred during deblending
128Memory overflow occurred during extraction

errBits vikingMapRemeasurement VIKINGZYSELJv20170124 processing warning/error bitwise flags {catalogue TType keyword: Error_bit_flag} int 4     meta.code
This uses the FLAGS attribute in SE. The individual bit flags that this can be decomposed into are as follows:
Bit FlagMeaning
1The object has neighbours, bright enough and close enough to significantly bias the MAG_AUTO photometry or bad pixels (more than 10% of photometry affected).
2The object was originally blended with another
4At least one pixel is saturated (or very close to)
8The object is truncated (too close to an image boundary)
16Object's aperture data are incomplete or corrupted
32Object's isophotal data are imcomplete or corrupted. This is an old flag inherited from SE v1.0, and is kept for compatability reasons. It doesn't have any consequence for the extracted parameters.
64Memory overflow occurred during deblending
128Memory overflow occurred during extraction

errBits vmcDetection VMCDR1 processing warning/error bitwise flags {catalogue TType keyword: Error_bit_flag} int 4     meta.code
Apparently not actually an error bit flag, but a count of the number of zero confidence pixels in the default (2 arcsec diameter) aperture.
errBits vmcDetection VMCDR2 processing warning/error bitwise flags {catalogue TType keyword: Error_bit_flag} int 4     meta.code
Apparently not actually an error bit flag, but a count of the number of zero confidence pixels in the default (2 arcsec diameter) aperture.
errBits vmcDetection VMCDR3 processing warning/error bitwise flags {catalogue TType keyword: Error_bit_flag} int 4     meta.code
Apparently not actually an error bit flag, but a count of the number of zero confidence pixels in the default (2 arcsec diameter) aperture.
errBits vmcDetection VMCDR4 processing warning/error bitwise flags {catalogue TType keyword: Error_bit_flag} int 4     meta.code
Apparently not actually an error bit flag, but a count of the number of zero confidence pixels in the default (2 arcsec diameter) aperture.
errBits vmcDetection VMCv20110816 processing warning/error bitwise flags {catalogue TType keyword: Error_bit_flag} int 4     meta.code
Apparently not actually an error bit flag, but a count of the number of zero confidence pixels in the default (2 arcsec diameter) aperture.
errBits vmcDetection VMCv20110909 processing warning/error bitwise flags {catalogue TType keyword: Error_bit_flag} int 4     meta.code
Apparently not actually an error bit flag, but a count of the number of zero confidence pixels in the default (2 arcsec diameter) aperture.
errBits vmcDetection VMCv20120126 processing warning/error bitwise flags {catalogue TType keyword: Error_bit_flag} int 4     meta.code
Apparently not actually an error bit flag, but a count of the number of zero confidence pixels in the default (2 arcsec diameter) aperture.
errBits vmcDetection VMCv20121128 processing warning/error bitwise flags {catalogue TType keyword: Error_bit_flag} int 4     meta.code
Apparently not actually an error bit flag, but a count of the number of zero confidence pixels in the default (2 arcsec diameter) aperture.
errBits vmcDetection VMCv20130304 processing warning/error bitwise flags {catalogue TType keyword: Error_bit_flag} int 4     meta.code
Apparently not actually an error bit flag, but a count of the number of zero confidence pixels in the default (2 arcsec diameter) aperture.
errBits vmcDetection VMCv20130805 processing warning/error bitwise flags {catalogue TType keyword: Error_bit_flag} int 4     meta.code
Apparently not actually an error bit flag, but a count of the number of zero confidence pixels in the default (2 arcsec diameter) aperture.
errBits vmcDetection VMCv20140428 processing warning/error bitwise flags {catalogue TType keyword: Error_bit_flag} int 4     meta.code
Apparently not actually an error bit flag, but a count of the number of zero confidence pixels in the default (2 arcsec diameter) aperture.
errBits vmcDetection VMCv20140903 processing warning/error bitwise flags {catalogue TType keyword: Error_bit_flag} int 4     meta.code
Apparently not actually an error bit flag, but a count of the number of zero confidence pixels in the default (2 arcsec diameter) aperture.
errBits vmcDetection VMCv20150309 processing warning/error bitwise flags {catalogue TType keyword: Error_bit_flag} int 4     meta.code
Apparently not actually an error bit flag, but a count of the number of zero confidence pixels in the default (2 arcsec diameter) aperture.
errBits vmcDetection VMCv20151218 processing warning/error bitwise flags {catalogue TType keyword: Error_bit_flag} int 4     meta.code
Apparently not actually an error bit flag, but a count of the number of zero confidence pixels in the default (2 arcsec diameter) aperture.
errBits vmcDetection VMCv20160311 processing warning/error bitwise flags {catalogue TType keyword: Error_bit_flag} int 4     meta.code
Apparently not actually an error bit flag, but a count of the number of zero confidence pixels in the default (2 arcsec diameter) aperture.
errBits vmcDetection VMCv20160822 processing warning/error bitwise flags {catalogue TType keyword: Error_bit_flag} int 4     meta.code
Apparently not actually an error bit flag, but a count of the number of zero confidence pixels in the default (2 arcsec diameter) aperture.
errBits vmcDetection VMCv20170109 processing warning/error bitwise flags {catalogue TType keyword: Error_bit_flag} int 4     meta.code
Apparently not actually an error bit flag, but a count of the number of zero confidence pixels in the default (2 arcsec diameter) aperture.
errBits vmcDetection VMCv20170411 processing warning/error bitwise flags {catalogue TType keyword: Error_bit_flag} int 4     meta.code
Apparently not actually an error bit flag, but a count of the number of zero confidence pixels in the default (2 arcsec diameter) aperture.
errBits vmcDetection VMCv20171101 processing warning/error bitwise flags {catalogue TType keyword: Error_bit_flag} int 4     meta.code
Apparently not actually an error bit flag, but a count of the number of zero confidence pixels in the default (2 arcsec diameter) aperture.
errBits vmcDetection VMCv20180702 processing warning/error bitwise flags {catalogue TType keyword: Error_bit_flag} int 4     meta.code
Apparently not actually an error bit flag, but a count of the number of zero confidence pixels in the default (2 arcsec diameter) aperture.
errBits vmcDetection VMCv20181120 processing warning/error bitwise flags {catalogue TType keyword: Error_bit_flag} int 4     meta.code
Apparently not actually an error bit flag, but a count of the number of zero confidence pixels in the default (2 arcsec diameter) aperture.
errBits vmcListRemeasurement VMCv20110816 processing warning/error bitwise flags {catalogue TType keyword: Error_bit_flag} int 4     meta.code
errBits vmcListRemeasurement VMCv20110909 processing warning/error bitwise flags {catalogue TType keyword: Error_bit_flag} int 4     meta.code
errBits vvvDetection VVVDR4 processing warning/error bitwise flags {catalogue TType keyword: Error_bit_flag} int 4     meta.code
Apparently not actually an error bit flag, but a count of the number of zero confidence pixels in the default (2 arcsec diameter) aperture.
errHr1 rosat_bsc, rosat_fsc ROSAT error of hardness ratio 1 float 8     stat.error
errHr2 rosat_bsc, rosat_fsc ROSAT error of hardness ratio 2 float 8     stat.error
ErrMB eros2LMCSource, eros2SMCSource, erosLMCSource, erosSMCSource EROS Error of mean magnitude in blue channel real 4      
ErrMR eros2LMCSource, eros2SMCSource, erosLMCSource, erosSMCSource EROS Error of mean magnitude in red channel real 4      
errP rosat_bsc ROSAT total positional error (1-sigma-radius; including 6" systematic error) tinyint 1 arcsec   stat.error
errP rosat_fsc ROSAT total positional error (1-sigma-radius; including 6" systematic error) smallint 2 arcsec   stat.error
errSrcCps rosat_bsc, rosat_fsc ROSAT error of source countrate, vignetting corrected real 4 counts/s   stat.error
esoDecMoon Multiframe VHSDR1 Declination of the Moon (J2000) (deg) {image primary HDU keyword: HIERARCH ESO TEL MOON DEC} float 8   -0.9999995e9 pos.eq.dec;meta.main
esoDecMoon Multiframe VHSDR2 Declination of the Moon (J2000) (deg) {image primary HDU keyword: HIERARCH ESO TEL MOON DEC} float 8   -0.9999995e9 pos.eq.dec;meta.main
esoDecMoon Multiframe VHSDR3 Declination of the Moon (J2000) (deg) {image primary HDU keyword: HIERARCH ESO TEL MOON DEC} float 8   -0.9999995e9 pos.eq.dec;meta.main
esoDecMoon Multiframe VHSDR4 Declination of the Moon (J2000) (deg) {image primary HDU keyword: HIERARCH ESO TEL MOON DEC} float 8   -0.9999995e9 pos.eq.dec;meta.main
esoDecMoon Multiframe VHSv20120926 Declination of the Moon (J2000) (deg) {image primary HDU keyword: HIERARCH ESO TEL MOON DEC} float 8   -0.9999995e9 pos.eq.dec;meta.main
esoDecMoon Multiframe VHSv20130417 Declination of the Moon (J2000) (deg) {image primary HDU keyword: HIERARCH ESO TEL MOON DEC} float 8   -0.9999995e9 pos.eq.dec;meta.main
esoDecMoon Multiframe VHSv20140409 Declination of the Moon (J2000) (deg) {image primary HDU keyword: HIERARCH ESO TEL MOON DEC} float 8   -0.9999995e9 pos.eq.dec;meta.main
esoDecMoon Multiframe VHSv20150108 Declination of the Moon (J2000) (deg) {image primary HDU keyword: HIERARCH ESO TEL MOON DEC} float 8   -0.9999995e9 pos.eq.dec;meta.main
esoDecMoon Multiframe VHSv20160114 Declination of the Moon (J2000) (deg) {image primary HDU keyword: HIERARCH ESO TEL MOON DEC} float 8   -0.9999995e9 pos.eq.dec;meta.main
esoDecMoon Multiframe VHSv20160507 Declination of the Moon (J2000) (deg) {image primary HDU keyword: HIERARCH ESO TEL MOON DEC} float 8   -0.9999995e9 pos.eq.dec;meta.main
esoDecMoon Multiframe VHSv20170630 Declination of the Moon (J2000) (deg) {image primary HDU keyword: HIERARCH ESO TEL MOON DEC} float 8   -0.9999995e9 pos.eq.dec;meta.main
esoDecMoon Multiframe VHSv20171207 Declination of the Moon (J2000) (deg) {image primary HDU keyword: HIERARCH ESO TEL MOON DEC} float 8   -0.9999995e9 pos.eq.dec;meta.main
esoDecMoon Multiframe VHSv20180419 Declination of the Moon (J2000) (deg) {image primary HDU keyword: HIERARCH ESO TEL MOON DEC} float 8   -0.9999995e9 pos.eq.dec;meta.main
esoDecMoon Multiframe VIDEODR2 Declination of the Moon (J2000) (deg) {image primary HDU keyword: HIERARCH ESO TEL MOON DEC} float 8   -0.9999995e9 pos.eq.dec;meta.main
esoDecMoon Multiframe VIDEODR3 Declination of the Moon (J2000) (deg) {image primary HDU keyword: HIERARCH ESO TEL MOON DEC} float 8   -0.9999995e9 pos.eq.dec;meta.main
esoDecMoon Multiframe VIDEODR4 Declination of the Moon (J2000) (deg) {image primary HDU keyword: HIERARCH ESO TEL MOON DEC} float 8   -0.9999995e9 pos.eq.dec;meta.main
esoDecMoon Multiframe VIDEODR5 Declination of the Moon (J2000) (deg) {image primary HDU keyword: HIERARCH ESO TEL MOON DEC} float 8   -0.9999995e9 pos.eq.dec;meta.main
esoDecMoon Multiframe VIDEOv20100513 Declination of the Moon (J2000) (deg) {image primary HDU keyword: HIERARCH ESO TEL MOON DEC} float 8   -0.9999995e9 pos.eq.dec;meta.main
esoDecMoon Multiframe VIDEOv20111208 Declination of the Moon (J2000) (deg) {image primary HDU keyword: HIERARCH ESO TEL MOON DEC} float 8   -0.9999995e9 pos.eq.dec;meta.main
esoDecMoon Multiframe VIKINGDR2 Declination of the Moon (J2000) (deg) {image primary HDU keyword: HIERARCH ESO TEL MOON DEC} float 8   -0.9999995e9 pos.eq.dec;meta.main
esoDecMoon Multiframe VIKINGDR3 Declination of the Moon (J2000) (deg) {image primary HDU keyword: HIERARCH ESO TEL MOON DEC} float 8   -0.9999995e9 pos.eq.dec;meta.main
esoDecMoon Multiframe VIKINGDR4 Declination of the Moon (J2000) (deg) {image primary HDU keyword: HIERARCH ESO TEL MOON DEC} float 8   -0.9999995e9 pos.eq.dec;meta.main
esoDecMoon Multiframe VIKINGv20110714 Declination of the Moon (J2000) (deg) {image primary HDU keyword: HIERARCH ESO TEL MOON DEC} float 8   -0.9999995e9 pos.eq.dec;meta.main
esoDecMoon Multiframe VIKINGv20111019 Declination of the Moon (J2000) (deg) {image primary HDU keyword: HIERARCH ESO TEL MOON DEC} float 8   -0.9999995e9 pos.eq.dec;meta.main
esoDecMoon Multiframe VIKINGv20130417 Declination of the Moon (J2000) (deg) {image primary HDU keyword: HIERARCH ESO TEL MOON DEC} float 8   -0.9999995e9 pos.eq.dec;meta.main
esoDecMoon Multiframe VIKINGv20140402 Declination of the Moon (J2000) (deg) {image primary HDU keyword: HIERARCH ESO TEL MOON DEC} float 8   -0.9999995e9 pos.eq.dec;meta.main
esoDecMoon Multiframe VIKINGv20150421 Declination of the Moon (J2000) (deg) {image primary HDU keyword: HIERARCH ESO TEL MOON DEC} float 8   -0.9999995e9 pos.eq.dec;meta.main
esoDecMoon Multiframe VIKINGv20151230 Declination of the Moon (J2000) (deg) {image primary HDU keyword: HIERARCH ESO TEL MOON DEC} float 8   -0.9999995e9 pos.eq.dec;meta.main
esoDecMoon Multiframe VIKINGv20160406 Declination of the Moon (J2000) (deg) {image primary HDU keyword: HIERARCH ESO TEL MOON DEC} float 8   -0.9999995e9 pos.eq.dec;meta.main
esoDecMoon Multiframe VIKINGv20161202 Declination of the Moon (J2000) (deg) {image primary HDU keyword: HIERARCH ESO TEL MOON DEC} float 8   -0.9999995e9 pos.eq.dec;meta.main
esoDecMoon Multiframe VIKINGv20170715 Declination of the Moon (J2000) (deg) {image primary HDU keyword: HIERARCH ESO TEL MOON DEC} float 8   -0.9999995e9 pos.eq.dec;meta.main
esoDecMoon Multiframe VIKINGv20181012 Declination of the Moon (J2000) (deg) {image primary HDU keyword: HIERARCH ESO TEL MOON DEC} float 8   -0.9999995e9 pos.eq.dec;meta.main
esoDecMoon Multiframe VMCDR1 Declination of the Moon (J2000) (deg) {image primary HDU keyword: HIERARCH ESO TEL MOON DEC} float 8   -0.9999995e9 pos.eq.dec;meta.main
esoDecMoon Multiframe VMCDR2 Declination of the Moon (J2000) (deg) {image primary HDU keyword: HIERARCH ESO TEL MOON DEC} float 8   -0.9999995e9 pos.eq.dec;meta.main
esoDecMoon Multiframe VMCDR3 Declination of the Moon (J2000) (deg) {image primary HDU keyword: HIERARCH ESO TEL MOON DEC} float 8   -0.9999995e9 pos.eq.dec;meta.main
esoDecMoon Multiframe VMCDR4 Declination of the Moon (J2000) (deg) {image primary HDU keyword: HIERARCH ESO TEL MOON DEC} float 8   -0.9999995e9 pos.eq.dec;meta.main
esoDecMoon Multiframe VMCv20110816 Declination of the Moon (J2000) (deg) {image primary HDU keyword: HIERARCH ESO TEL MOON DEC} float 8   -0.9999995e9 pos.eq.dec;meta.main
esoDecMoon Multiframe VMCv20110909 Declination of the Moon (J2000) (deg) {image primary HDU keyword: HIERARCH ESO TEL MOON DEC} float 8   -0.9999995e9 pos.eq.dec;meta.main
esoDecMoon Multiframe VMCv20120126 Declination of the Moon (J2000) (deg) {image primary HDU keyword: HIERARCH ESO TEL MOON DEC} float 8   -0.9999995e9 pos.eq.dec;meta.main
esoDecMoon Multiframe VMCv20121128 Declination of the Moon (J2000) (deg) {image primary HDU keyword: HIERARCH ESO TEL MOON DEC} float 8   -0.9999995e9 pos.eq.dec;meta.main
esoDecMoon Multiframe VMCv20130304 Declination of the Moon (J2000) (deg) {image primary HDU keyword: HIERARCH ESO TEL MOON DEC} float 8   -0.9999995e9 pos.eq.dec;meta.main
esoDecMoon Multiframe VMCv20130805 Declination of the Moon (J2000) (deg) {image primary HDU keyword: HIERARCH ESO TEL MOON DEC} float 8   -0.9999995e9 pos.eq.dec;meta.main
esoDecMoon Multiframe VMCv20140428 Declination of the Moon (J2000) (deg) {image primary HDU keyword: HIERARCH ESO TEL MOON DEC} float 8   -0.9999995e9 pos.eq.dec;meta.main
esoDecMoon Multiframe VMCv20140903 Declination of the Moon (J2000) (deg) {image primary HDU keyword: HIERARCH ESO TEL MOON DEC} float 8   -0.9999995e9 pos.eq.dec;meta.main
esoDecMoon Multiframe VMCv20150309 Declination of the Moon (J2000) (deg) {image primary HDU keyword: HIERARCH ESO TEL MOON DEC} float 8   -0.9999995e9 pos.eq.dec;meta.main
esoDecMoon Multiframe VMCv20151218 Declination of the Moon (J2000) (deg) {image primary HDU keyword: HIERARCH ESO TEL MOON DEC} float 8   -0.9999995e9 pos.eq.dec;meta.main
esoDecMoon Multiframe VMCv20160311 Declination of the Moon (J2000) (deg) {image primary HDU keyword: HIERARCH ESO TEL MOON DEC} float 8   -0.9999995e9 pos.eq.dec;meta.main
esoDecMoon Multiframe VMCv20160822 Declination of the Moon (J2000) (deg) {image primary HDU keyword: HIERARCH ESO TEL MOON DEC} float 8   -0.9999995e9 pos.eq.dec;meta.main
esoDecMoon Multiframe VMCv20170109 Declination of the Moon (J2000) (deg) {image primary HDU keyword: HIERARCH ESO TEL MOON DEC} float 8   -0.9999995e9 pos.eq.dec;meta.main
esoDecMoon Multiframe VMCv20170411 Declination of the Moon (J2000) (deg) {image primary HDU keyword: HIERARCH ESO TEL MOON DEC} float 8   -0.9999995e9 pos.eq.dec;meta.main
esoDecMoon Multiframe VMCv20171101 Declination of the Moon (J2000) (deg) {image primary HDU keyword: HIERARCH ESO TEL MOON DEC} float 8   -0.9999995e9 pos.eq.dec;meta.main
esoDecMoon Multiframe VMCv20180702 Declination of the Moon (J2000) (deg) {image primary HDU keyword: HIERARCH ESO TEL MOON DEC} float 8   -0.9999995e9 pos.eq.dec;meta.main
esoDecMoon Multiframe VMCv20181120 Declination of the Moon (J2000) (deg) {image primary HDU keyword: HIERARCH ESO TEL MOON DEC} float 8   -0.9999995e9 pos.eq.dec;meta.main
esoDecMoon Multiframe VVVDR4 Declination of the Moon (J2000) (deg) {image primary HDU keyword: HIERARCH ESO TEL MOON DEC} float 8   -0.9999995e9 pos.eq.dec;meta.main
esoDecMoon ultravistaMultiframe, vhsMultiframe, videoMultiframe, vikingMultiframe, vmcMultiframe, vvvMultiframe VSAQC Declination of the Moon (J2000) (deg) float 8   -0.9999995e9 pos.eq.dec;meta.main
esoGrade Multiframe VHSDR1 ESO QC grade: 'A' if fully under constrains, 'B' if mostly (90%) under constrains, 'C' if out of constrains and 'R' rejected. {image primary HDU keyword: ESOGRADE} varchar 4   NONE ??
esoGrade Multiframe VHSDR2 ESO QC grade: 'A' if fully under constrains, 'B' if mostly (90%) under constrains, 'C' if out of constrains and 'R' rejected. {image primary HDU keyword: ESOGRADE} varchar 4   NONE ??
esoGrade Multiframe VHSDR3 ESO QC grade: 'A' if fully under constraints, 'B' if mostly (90%) under constraints, 'C' if out of constraints and 'R' rejected. {image primary HDU keyword: ESOGRADE} varchar 4   NONE ??
esoGrade Multiframe VHSDR4 ESO QC grade: 'A' if fully under constraints, 'B' if mostly (90%) under constraints, 'C' if out of constraints and 'R' rejected. {image primary HDU keyword: ESOGRADE} varchar 4   NONE ??
esoGrade Multiframe VHSv20120926 ESO QC grade: 'A' if fully under constrains, 'B' if mostly (90%) under constrains, 'C' if out of constrains and 'R' rejected. {image primary HDU keyword: ESOGRADE} varchar 4   NONE ??
esoGrade Multiframe VHSv20130417 ESO QC grade: 'A' if fully under constrains, 'B' if mostly (90%) under constrains, 'C' if out of constrains and 'R' rejected. {image primary HDU keyword: ESOGRADE} varchar 4   NONE ??
esoGrade Multiframe VHSv20140409 ESO QC grade: 'A' if fully under constrains, 'B' if mostly (90%) under constrains, 'C' if out of constrains and 'R' rejected. {image primary HDU keyword: ESOGRADE} varchar 4   NONE ??
esoGrade Multiframe VHSv20150108 ESO QC grade: 'A' if fully under constraints, 'B' if mostly (90%) under constraints, 'C' if out of constraints and 'R' rejected. {image primary HDU keyword: ESOGRADE} varchar 4   NONE ??
esoGrade Multiframe VHSv20160114 ESO QC grade: 'A' if fully under constraints, 'B' if mostly (90%) under constraints, 'C' if out of constraints and 'R' rejected. {image primary HDU keyword: ESOGRADE} varchar 4   NONE ??
esoGrade Multiframe VHSv20160507 ESO QC grade: 'A' if fully under constraints, 'B' if mostly (90%) under constraints, 'C' if out of constraints and 'R' rejected. {image primary HDU keyword: ESOGRADE} varchar 4   NONE ??
esoGrade Multiframe VHSv20170630 ESO QC grade: 'A' if fully under constraints, 'B' if mostly (90%) under constraints, 'C' if out of constraints and 'R' rejected. {image primary HDU keyword: ESOGRADE} varchar 4   NONE ??
esoGrade Multiframe VHSv20171207 ESO QC grade: 'A' if fully under constraints, 'B' if mostly (90%) under constraints, 'C' if out of constraints and 'R' rejected. {image primary HDU keyword: ESOGRADE} varchar 4   NONE ??
esoGrade Multiframe VHSv20180419 ESO QC grade: 'A' if fully under constraints, 'B' if mostly (90%) under constraints, 'C' if out of constraints and 'R' rejected. {image primary HDU keyword: ESOGRADE} varchar 4   NONE ??
esoGrade Multiframe VIDEODR2 ESO QC grade: 'A' if fully under constrains, 'B' if mostly (90%) under constrains, 'C' if out of constrains and 'R' rejected. {image primary HDU keyword: ESOGRADE} varchar 4   NONE ??
esoGrade Multiframe VIDEODR3 ESO QC grade: 'A' if fully under constrains, 'B' if mostly (90%) under constrains, 'C' if out of constrains and 'R' rejected. {image primary HDU keyword: ESOGRADE} varchar 4   NONE ??
esoGrade Multiframe VIDEODR4 ESO QC grade: 'A' if fully under constraints, 'B' if mostly (90%) under constraints, 'C' if out of constraints and 'R' rejected. {image primary HDU keyword: ESOGRADE} varchar 4   NONE ??
esoGrade Multiframe VIDEODR5 ESO QC grade: 'A' if fully under constraints, 'B' if mostly (90%) under constraints, 'C' if out of constraints and 'R' rejected. {image primary HDU keyword: ESOGRADE} varchar 4   NONE ??
esoGrade Multiframe VIDEOv20111208 ESO QC grade: 'A' if fully under constrains, 'B' if mostly (90%) under constrains, 'C' if out of constrains and 'R' rejected. {image primary HDU keyword: ESOGRADE} varchar 4   NONE ??
esoGrade Multiframe VIKINGDR2 ESO QC grade: 'A' if fully under constrains, 'B' if mostly (90%) under constrains, 'C' if out of constrains and 'R' rejected. {image primary HDU keyword: ESOGRADE} varchar 4   NONE ??
esoGrade Multiframe VIKINGDR3 ESO QC grade: 'A' if fully under constrains, 'B' if mostly (90%) under constrains, 'C' if out of constrains and 'R' rejected. {image primary HDU keyword: ESOGRADE} varchar 4   NONE ??
esoGrade Multiframe VIKINGDR4 ESO QC grade: 'A' if fully under constraints, 'B' if mostly (90%) under constraints, 'C' if out of constraints and 'R' rejected. {image primary HDU keyword: ESOGRADE} varchar 4   NONE ??
esoGrade Multiframe VIKINGv20110714 ESO QC grade: 'A' if fully under constrains, 'B' if mostly (90%) under constrains, 'C' if out of constrains and 'R' rejected. {image primary HDU keyword: ESOGRADE} varchar 4   NONE ??
esoGrade Multiframe VIKINGv20111019 ESO QC grade: 'A' if fully under constrains, 'B' if mostly (90%) under constrains, 'C' if out of constrains and 'R' rejected. {image primary HDU keyword: ESOGRADE} varchar 4   NONE ??
esoGrade Multiframe VIKINGv20130417 ESO QC grade: 'A' if fully under constrains, 'B' if mostly (90%) under constrains, 'C' if out of constrains and 'R' rejected. {image primary HDU keyword: ESOGRADE} varchar 4   NONE ??
esoGrade Multiframe VIKINGv20140402 ESO QC grade: 'A' if fully under constrains, 'B' if mostly (90%) under constrains, 'C' if out of constrains and 'R' rejected. {image primary HDU keyword: ESOGRADE} varchar 4   NONE ??
esoGrade Multiframe VIKINGv20150421 ESO QC grade: 'A' if fully under constraints, 'B' if mostly (90%) under constraints, 'C' if out of constraints and 'R' rejected. {image primary HDU keyword: ESOGRADE} varchar 4   NONE ??
esoGrade Multiframe VIKINGv20151230 ESO QC grade: 'A' if fully under constraints, 'B' if mostly (90%) under constraints, 'C' if out of constraints and 'R' rejected. {image primary HDU keyword: ESOGRADE} varchar 4   NONE ??
esoGrade Multiframe VIKINGv20160406 ESO QC grade: 'A' if fully under constraints, 'B' if mostly (90%) under constraints, 'C' if out of constraints and 'R' rejected. {image primary HDU keyword: ESOGRADE} varchar 4   NONE ??
esoGrade Multiframe VIKINGv20161202 ESO QC grade: 'A' if fully under constraints, 'B' if mostly (90%) under constraints, 'C' if out of constraints and 'R' rejected. {image primary HDU keyword: ESOGRADE} varchar 4   NONE ??
esoGrade Multiframe VIKINGv20170715 ESO QC grade: 'A' if fully under constraints, 'B' if mostly (90%) under constraints, 'C' if out of constraints and 'R' rejected. {image primary HDU keyword: ESOGRADE} varchar 4   NONE ??
esoGrade Multiframe VIKINGv20181012 ESO QC grade: 'A' if fully under constraints, 'B' if mostly (90%) under constraints, 'C' if out of constraints and 'R' rejected. {image primary HDU keyword: ESOGRADE} varchar 4   NONE ??
esoGrade Multiframe VMCDR1 ESO QC grade: 'A' if fully under constrains, 'B' if mostly (90%) under constrains, 'C' if out of constrains and 'R' rejected. {image primary HDU keyword: ESOGRADE} varchar 4   NONE ??
esoGrade Multiframe VMCDR2 ESO QC grade: 'A' if fully under constrains, 'B' if mostly (90%) under constrains, 'C' if out of constrains and 'R' rejected. {image primary HDU keyword: ESOGRADE} varchar 4   NONE ??
esoGrade Multiframe VMCDR3 ESO QC grade: 'A' if fully under constraints, 'B' if mostly (90%) under constraints, 'C' if out of constraints and 'R' rejected. {image primary HDU keyword: ESOGRADE} varchar 4   NONE ??
esoGrade Multiframe VMCDR4 ESO QC grade: 'A' if fully under constraints, 'B' if mostly (90%) under constraints, 'C' if out of constraints and 'R' rejected. {image primary HDU keyword: ESOGRADE} varchar 4   NONE ??
esoGrade Multiframe VMCv20110816 ESO QC grade: 'A' if fully under constrains, 'B' if mostly (90%) under constrains, 'C' if out of constrains and 'R' rejected. {image primary HDU keyword: ESOGRADE} varchar 4   NONE ??
esoGrade Multiframe VMCv20110909 ESO QC grade: 'A' if fully under constrains, 'B' if mostly (90%) under constrains, 'C' if out of constrains and 'R' rejected. {image primary HDU keyword: ESOGRADE} varchar 4   NONE ??
esoGrade Multiframe VMCv20120126 ESO QC grade: 'A' if fully under constrains, 'B' if mostly (90%) under constrains, 'C' if out of constrains and 'R' rejected. {image primary HDU keyword: ESOGRADE} varchar 4   NONE ??
esoGrade Multiframe VMCv20121128 ESO QC grade: 'A' if fully under constrains, 'B' if mostly (90%) under constrains, 'C' if out of constrains and 'R' rejected. {image primary HDU keyword: ESOGRADE} varchar 4   NONE ??
esoGrade Multiframe VMCv20130304 ESO QC grade: 'A' if fully under constrains, 'B' if mostly (90%) under constrains, 'C' if out of constrains and 'R' rejected. {image primary HDU keyword: ESOGRADE} varchar 4   NONE ??
esoGrade Multiframe VMCv20130805 ESO QC grade: 'A' if fully under constrains, 'B' if mostly (90%) under constrains, 'C' if out of constrains and 'R' rejected. {image primary HDU keyword: ESOGRADE} varchar 4   NONE ??
esoGrade Multiframe VMCv20140428 ESO QC grade: 'A' if fully under constraints, 'B' if mostly (90%) under constraints, 'C' if out of constraints and 'R' rejected. {image primary HDU keyword: ESOGRADE} varchar 4   NONE ??
esoGrade Multiframe VMCv20140903 ESO QC grade: 'A' if fully under constraints, 'B' if mostly (90%) under constraints, 'C' if out of constraints and 'R' rejected. {image primary HDU keyword: ESOGRADE} varchar 4   NONE ??
esoGrade Multiframe VMCv20150309 ESO QC grade: 'A' if fully under constraints, 'B' if mostly (90%) under constraints, 'C' if out of constraints and 'R' rejected. {image primary HDU keyword: ESOGRADE} varchar 4   NONE ??
esoGrade Multiframe VMCv20151218 ESO QC grade: 'A' if fully under constraints, 'B' if mostly (90%) under constraints, 'C' if out of constraints and 'R' rejected. {image primary HDU keyword: ESOGRADE} varchar 4   NONE ??
esoGrade Multiframe VMCv20160311 ESO QC grade: 'A' if fully under constraints, 'B' if mostly (90%) under constraints, 'C' if out of constraints and 'R' rejected. {image primary HDU keyword: ESOGRADE} varchar 4   NONE ??
esoGrade Multiframe VMCv20160822 ESO QC grade: 'A' if fully under constraints, 'B' if mostly (90%) under constraints, 'C' if out of constraints and 'R' rejected. {image primary HDU keyword: ESOGRADE} varchar 4   NONE ??
esoGrade Multiframe VMCv20170109 ESO QC grade: 'A' if fully under constraints, 'B' if mostly (90%) under constraints, 'C' if out of constraints and 'R' rejected. {image primary HDU keyword: ESOGRADE} varchar 4   NONE ??
esoGrade Multiframe VMCv20170411 ESO QC grade: 'A' if fully under constraints, 'B' if mostly (90%) under constraints, 'C' if out of constraints and 'R' rejected. {image primary HDU keyword: ESOGRADE} varchar 4   NONE ??
esoGrade Multiframe VMCv20171101 ESO QC grade: 'A' if fully under constraints, 'B' if mostly (90%) under constraints, 'C' if out of constraints and 'R' rejected. {image primary HDU keyword: ESOGRADE} varchar 4   NONE ??
esoGrade Multiframe VMCv20180702 ESO QC grade: 'A' if fully under constraints, 'B' if mostly (90%) under constraints, 'C' if out of constraints and 'R' rejected. {image primary HDU keyword: ESOGRADE} varchar 4   NONE ??
esoGrade Multiframe VMCv20181120 ESO QC grade: 'A' if fully under constraints, 'B' if mostly (90%) under constraints, 'C' if out of constraints and 'R' rejected. {image primary HDU keyword: ESOGRADE} varchar 4   NONE ??
esoGrade Multiframe VVVDR4 ESO QC grade: 'A' if fully under constraints, 'B' if mostly (90%) under constraints, 'C' if out of constraints and 'R' rejected. {image primary HDU keyword: ESOGRADE} varchar 4   NONE ??
esoGrade ultravistaMultiframe, vhsMultiframe, videoMultiframe, vikingMultiframe, vmcMultiframe, vvvMultiframe VSAQC ESO QC grade: 'A' if fully under constrains, 'B' if mostly (90%) under constrains, 'C' if out of constrains and 'R' rejected. varchar 4   NONE ??
esoRaMoon Multiframe VHSDR1 Right ascension of the Moon (J2000) (deg) {image primary HDU keyword: HIERARCH ESO TEL MOON RA} float 8   -0.9999995e9 pos.eq.ra;meta.main
esoRaMoon Multiframe VHSDR2 Right ascension of the Moon (J2000) (deg) {image primary HDU keyword: HIERARCH ESO TEL MOON RA} float 8   -0.9999995e9 pos.eq.ra;meta.main
esoRaMoon Multiframe VHSDR3 Right ascension of the Moon (J2000) (deg) {image primary HDU keyword: HIERARCH ESO TEL MOON RA} float 8   -0.9999995e9 pos.eq.ra;meta.main
esoRaMoon Multiframe VHSDR4 Right ascension of the Moon (J2000) (deg) {image primary HDU keyword: HIERARCH ESO TEL MOON RA} float 8   -0.9999995e9 pos.eq.ra;meta.main
esoRaMoon Multiframe VHSv20120926 Right ascension of the Moon (J2000) (deg) {image primary HDU keyword: HIERARCH ESO TEL MOON RA} float 8   -0.9999995e9 pos.eq.ra;meta.main
esoRaMoon Multiframe VHSv20130417 Right ascension of the Moon (J2000) (deg) {image primary HDU keyword: HIERARCH ESO TEL MOON RA} float 8   -0.9999995e9 pos.eq.ra;meta.main
esoRaMoon Multiframe VHSv20140409 Right ascension of the Moon (J2000) (deg) {image primary HDU keyword: HIERARCH ESO TEL MOON RA} float 8   -0.9999995e9 pos.eq.ra;meta.main
esoRaMoon Multiframe VHSv20150108 Right ascension of the Moon (J2000) (deg) {image primary HDU keyword: HIERARCH ESO TEL MOON RA} float 8   -0.9999995e9 pos.eq.ra;meta.main
esoRaMoon Multiframe VHSv20160114 Right ascension of the Moon (J2000) (deg) {image primary HDU keyword: HIERARCH ESO TEL MOON RA} float 8   -0.9999995e9 pos.eq.ra;meta.main
esoRaMoon Multiframe VHSv20160507 Right ascension of the Moon (J2000) (deg) {image primary HDU keyword: HIERARCH ESO TEL MOON RA} float 8   -0.9999995e9 pos.eq.ra;meta.main
esoRaMoon Multiframe VHSv20170630 Right ascension of the Moon (J2000) (deg) {image primary HDU keyword: HIERARCH ESO TEL MOON RA} float 8   -0.9999995e9 pos.eq.ra;meta.main
esoRaMoon Multiframe VHSv20171207 Right ascension of the Moon (J2000) (deg) {image primary HDU keyword: HIERARCH ESO TEL MOON RA} float 8   -0.9999995e9 pos.eq.ra;meta.main
esoRaMoon Multiframe VHSv20180419 Right ascension of the Moon (J2000) (deg) {image primary HDU keyword: HIERARCH ESO TEL MOON RA} float 8   -0.9999995e9 pos.eq.ra;meta.main
esoRaMoon Multiframe VIDEODR2 Right ascension of the Moon (J2000) (deg) {image primary HDU keyword: HIERARCH ESO TEL MOON RA} float 8   -0.9999995e9 pos.eq.ra;meta.main
esoRaMoon Multiframe VIDEODR3 Right ascension of the Moon (J2000) (deg) {image primary HDU keyword: HIERARCH ESO TEL MOON RA} float 8   -0.9999995e9 pos.eq.ra;meta.main
esoRaMoon Multiframe VIDEODR4 Right ascension of the Moon (J2000) (deg) {image primary HDU keyword: HIERARCH ESO TEL MOON RA} float 8   -0.9999995e9 pos.eq.ra;meta.main
esoRaMoon Multiframe VIDEODR5 Right ascension of the Moon (J2000) (deg) {image primary HDU keyword: HIERARCH ESO TEL MOON RA} float 8   -0.9999995e9 pos.eq.ra;meta.main
esoRaMoon Multiframe VIDEOv20100513 Right ascension of the Moon (J2000) (deg) {image primary HDU keyword: HIERARCH ESO TEL MOON RA} float 8   -0.9999995e9 pos.eq.ra;meta.main
esoRaMoon Multiframe VIDEOv20111208 Right ascension of the Moon (J2000) (deg) {image primary HDU keyword: HIERARCH ESO TEL MOON RA} float 8   -0.9999995e9 pos.eq.ra;meta.main
esoRaMoon Multiframe VIKINGDR2 Right ascension of the Moon (J2000) (deg) {image primary HDU keyword: HIERARCH ESO TEL MOON RA} float 8   -0.9999995e9 pos.eq.ra;meta.main
esoRaMoon Multiframe VIKINGDR3 Right ascension of the Moon (J2000) (deg) {image primary HDU keyword: HIERARCH ESO TEL MOON RA} float 8   -0.9999995e9 pos.eq.ra;meta.main
esoRaMoon Multiframe VIKINGDR4 Right ascension of the Moon (J2000) (deg) {image primary HDU keyword: HIERARCH ESO TEL MOON RA} float 8   -0.9999995e9 pos.eq.ra;meta.main
esoRaMoon Multiframe VIKINGv20110714 Right ascension of the Moon (J2000) (deg) {image primary HDU keyword: HIERARCH ESO TEL MOON RA} float 8   -0.9999995e9 pos.eq.ra;meta.main
esoRaMoon Multiframe VIKINGv20111019 Right ascension of the Moon (J2000) (deg) {image primary HDU keyword: HIERARCH ESO TEL MOON RA} float 8   -0.9999995e9 pos.eq.ra;meta.main
esoRaMoon Multiframe VIKINGv20130417 Right ascension of the Moon (J2000) (deg) {image primary HDU keyword: HIERARCH ESO TEL MOON RA} float 8   -0.9999995e9 pos.eq.ra;meta.main
esoRaMoon Multiframe VIKINGv20140402 Right ascension of the Moon (J2000) (deg) {image primary HDU keyword: HIERARCH ESO TEL MOON RA} float 8   -0.9999995e9 pos.eq.ra;meta.main
esoRaMoon Multiframe VIKINGv20150421 Right ascension of the Moon (J2000) (deg) {image primary HDU keyword: HIERARCH ESO TEL MOON RA} float 8   -0.9999995e9 pos.eq.ra;meta.main
esoRaMoon Multiframe VIKINGv20151230 Right ascension of the Moon (J2000) (deg) {image primary HDU keyword: HIERARCH ESO TEL MOON RA} float 8   -0.9999995e9 pos.eq.ra;meta.main
esoRaMoon Multiframe VIKINGv20160406 Right ascension of the Moon (J2000) (deg) {image primary HDU keyword: HIERARCH ESO TEL MOON RA} float 8   -0.9999995e9 pos.eq.ra;meta.main
esoRaMoon Multiframe VIKINGv20161202 Right ascension of the Moon (J2000) (deg) {image primary HDU keyword: HIERARCH ESO TEL MOON RA} float 8   -0.9999995e9 pos.eq.ra;meta.main
esoRaMoon Multiframe VIKINGv20170715 Right ascension of the Moon (J2000) (deg) {image primary HDU keyword: HIERARCH ESO TEL MOON RA} float 8   -0.9999995e9 pos.eq.ra;meta.main
esoRaMoon Multiframe VIKINGv20181012 Right ascension of the Moon (J2000) (deg) {image primary HDU keyword: HIERARCH ESO TEL MOON RA} float 8   -0.9999995e9 pos.eq.ra;meta.main
esoRaMoon Multiframe VMCDR1 Right ascension of the Moon (J2000) (deg) {image primary HDU keyword: HIERARCH ESO TEL MOON RA} float 8   -0.9999995e9 pos.eq.ra;meta.main
esoRaMoon Multiframe VMCDR2 Right ascension of the Moon (J2000) (deg) {image primary HDU keyword: HIERARCH ESO TEL MOON RA} float 8   -0.9999995e9 pos.eq.ra;meta.main
esoRaMoon Multiframe VMCDR3 Right ascension of the Moon (J2000) (deg) {image primary HDU keyword: HIERARCH ESO TEL MOON RA} float 8   -0.9999995e9 pos.eq.ra;meta.main
esoRaMoon Multiframe VMCDR4 Right ascension of the Moon (J2000) (deg) {image primary HDU keyword: HIERARCH ESO TEL MOON RA} float 8   -0.9999995e9 pos.eq.ra;meta.main
esoRaMoon Multiframe VMCv20110816 Right ascension of the Moon (J2000) (deg) {image primary HDU keyword: HIERARCH ESO TEL MOON RA} float 8   -0.9999995e9 pos.eq.ra;meta.main
esoRaMoon Multiframe VMCv20110909 Right ascension of the Moon (J2000) (deg) {image primary HDU keyword: HIERARCH ESO TEL MOON RA} float 8   -0.9999995e9 pos.eq.ra;meta.main
esoRaMoon Multiframe VMCv20120126 Right ascension of the Moon (J2000) (deg) {image primary HDU keyword: HIERARCH ESO TEL MOON RA} float 8   -0.9999995e9 pos.eq.ra;meta.main
esoRaMoon Multiframe VMCv20121128 Right ascension of the Moon (J2000) (deg) {image primary HDU keyword: HIERARCH ESO TEL MOON RA} float 8   -0.9999995e9 pos.eq.ra;meta.main
esoRaMoon Multiframe VMCv20130304 Right ascension of the Moon (J2000) (deg) {image primary HDU keyword: HIERARCH ESO TEL MOON RA} float 8   -0.9999995e9 pos.eq.ra;meta.main
esoRaMoon Multiframe VMCv20130805 Right ascension of the Moon (J2000) (deg) {image primary HDU keyword: HIERARCH ESO TEL MOON RA} float 8   -0.9999995e9 pos.eq.ra;meta.main
esoRaMoon Multiframe VMCv20140428 Right ascension of the Moon (J2000) (deg) {image primary HDU keyword: HIERARCH ESO TEL MOON RA} float 8   -0.9999995e9 pos.eq.ra;meta.main
esoRaMoon Multiframe VMCv20140903 Right ascension of the Moon (J2000) (deg) {image primary HDU keyword: HIERARCH ESO TEL MOON RA} float 8   -0.9999995e9 pos.eq.ra;meta.main
esoRaMoon Multiframe VMCv20150309 Right ascension of the Moon (J2000) (deg) {image primary HDU keyword: HIERARCH ESO TEL MOON RA} float 8   -0.9999995e9 pos.eq.ra;meta.main
esoRaMoon Multiframe VMCv20151218 Right ascension of the Moon (J2000) (deg) {image primary HDU keyword: HIERARCH ESO TEL MOON RA} float 8   -0.9999995e9 pos.eq.ra;meta.main
esoRaMoon Multiframe VMCv20160311 Right ascension of the Moon (J2000) (deg) {image primary HDU keyword: HIERARCH ESO TEL MOON RA} float 8   -0.9999995e9 pos.eq.ra;meta.main
esoRaMoon Multiframe VMCv20160822 Right ascension of the Moon (J2000) (deg) {image primary HDU keyword: HIERARCH ESO TEL MOON RA} float 8   -0.9999995e9 pos.eq.ra;meta.main
esoRaMoon Multiframe VMCv20170109 Right ascension of the Moon (J2000) (deg) {image primary HDU keyword: HIERARCH ESO TEL MOON RA} float 8   -0.9999995e9 pos.eq.ra;meta.main
esoRaMoon Multiframe VMCv20170411 Right ascension of the Moon (J2000) (deg) {image primary HDU keyword: HIERARCH ESO TEL MOON RA} float 8   -0.9999995e9 pos.eq.ra;meta.main
esoRaMoon Multiframe VMCv20171101 Right ascension of the Moon (J2000) (deg) {image primary HDU keyword: HIERARCH ESO TEL MOON RA} float 8   -0.9999995e9 pos.eq.ra;meta.main
esoRaMoon Multiframe VMCv20180702 Right ascension of the Moon (J2000) (deg) {image primary HDU keyword: HIERARCH ESO TEL MOON RA} float 8   -0.9999995e9 pos.eq.ra;meta.main
esoRaMoon Multiframe VMCv20181120 Right ascension of the Moon (J2000) (deg) {image primary HDU keyword: HIERARCH ESO TEL MOON RA} float 8   -0.9999995e9 pos.eq.ra;meta.main
esoRaMoon Multiframe VVVDR4 Right ascension of the Moon (J2000) (deg) {image primary HDU keyword: HIERARCH ESO TEL MOON RA} float 8   -0.9999995e9 pos.eq.ra;meta.main
esoRaMoon ultravistaMultiframe, vhsMultiframe, videoMultiframe, vikingMultiframe, vmcMultiframe, vvvMultiframe VSAQC Right ascension of the Moon (J2000) (deg) float 8   -0.9999995e9 pos.eq.ra;meta.main
eta CurrentAstrometry VHSDR1 SDSS system spherical co-ordinate 2 of device centre float 8 Degrees -0.9999995e9 pos
eta CurrentAstrometry VHSDR2 SDSS system spherical co-ordinate 2 of device centre float 8 Degrees -0.9999995e9 pos
eta CurrentAstrometry VHSDR3 SDSS system spherical co-ordinate 2 of device centre float 8 Degrees -0.9999995e9 pos
eta CurrentAstrometry VHSDR4 SDSS system spherical co-ordinate 2 of device centre float 8 Degrees -0.9999995e9 pos
eta CurrentAstrometry VHSv20120926 SDSS system spherical co-ordinate 2 of device centre float 8 Degrees -0.9999995e9 pos
eta CurrentAstrometry VHSv20130417 SDSS system spherical co-ordinate 2 of device centre float 8 Degrees -0.9999995e9 pos
eta CurrentAstrometry VHSv20140409 SDSS system spherical co-ordinate 2 of device centre float 8 Degrees -0.9999995e9 pos
eta CurrentAstrometry VHSv20150108 SDSS system spherical co-ordinate 2 of device centre float 8 Degrees -0.9999995e9 pos
eta CurrentAstrometry VHSv20160114 SDSS system spherical co-ordinate 2 of device centre float 8 Degrees -0.9999995e9 pos
eta CurrentAstrometry VHSv20160507 SDSS system spherical co-ordinate 2 of device centre float 8 Degrees -0.9999995e9 pos
eta CurrentAstrometry VHSv20170630 SDSS system spherical co-ordinate 2 of device centre float 8 Degrees -0.9999995e9 pos
eta CurrentAstrometry VHSv20171207 SDSS system spherical co-ordinate 2 of device centre float 8 Degrees -0.9999995e9 pos
eta CurrentAstrometry VHSv20180419 SDSS system spherical co-ordinate 2 of device centre float 8 Degrees -0.9999995e9 pos
eta CurrentAstrometry VIDEODR2 SDSS system spherical co-ordinate 2 of device centre float 8 Degrees -0.9999995e9 pos
eta CurrentAstrometry VIDEODR3 SDSS system spherical co-ordinate 2 of device centre float 8 Degrees -0.9999995e9 pos
eta CurrentAstrometry VIDEODR4 SDSS system spherical co-ordinate 2 of device centre float 8 Degrees -0.9999995e9 pos
eta CurrentAstrometry VIDEODR5 SDSS system spherical co-ordinate 2 of device centre float 8 Degrees -0.9999995e9 pos
eta CurrentAstrometry VIDEOv20100513 SDSS system spherical co-ordinate 2 of device centre float 8 Degrees -0.9999995e9 pos
eta CurrentAstrometry VIDEOv20111208 SDSS system spherical co-ordinate 2 of device centre float 8 Degrees -0.9999995e9 pos
eta CurrentAstrometry VIKINGDR2 SDSS system spherical co-ordinate 2 of device centre float 8 Degrees -0.9999995e9 pos
eta CurrentAstrometry VIKINGDR3 SDSS system spherical co-ordinate 2 of device centre float 8 Degrees -0.9999995e9 pos
eta CurrentAstrometry VIKINGDR4 SDSS system spherical co-ordinate 2 of device centre float 8 Degrees -0.9999995e9 pos
eta CurrentAstrometry VIKINGv20110714 SDSS system spherical co-ordinate 2 of device centre float 8 Degrees -0.9999995e9 pos
eta CurrentAstrometry VIKINGv20111019 SDSS system spherical co-ordinate 2 of device centre float 8 Degrees -0.9999995e9 pos
eta CurrentAstrometry VIKINGv20130417 SDSS system spherical co-ordinate 2 of device centre float 8 Degrees -0.9999995e9 pos
eta CurrentAstrometry VIKINGv20140402 SDSS system spherical co-ordinate 2 of device centre float 8 Degrees -0.9999995e9 pos
eta CurrentAstrometry VIKINGv20150421 SDSS system spherical co-ordinate 2 of device centre float 8 Degrees -0.9999995e9 pos
eta CurrentAstrometry VIKINGv20151230 SDSS system spherical co-ordinate 2 of device centre float 8 Degrees -0.9999995e9 pos
eta CurrentAstrometry VIKINGv20160406 SDSS system spherical co-ordinate 2 of device centre float 8 Degrees -0.9999995e9 pos
eta CurrentAstrometry VIKINGv20161202 SDSS system spherical co-ordinate 2 of device centre float 8 Degrees -0.9999995e9 pos
eta CurrentAstrometry VIKINGv20170715 SDSS system spherical co-ordinate 2 of device centre float 8 Degrees -0.9999995e9 pos
eta CurrentAstrometry VIKINGv20181012 SDSS system spherical co-ordinate 2 of device centre float 8 Degrees -0.9999995e9 pos
eta CurrentAstrometry VMCDR1 SDSS system spherical co-ordinate 2 of device centre float 8 Degrees -0.9999995e9 pos
eta CurrentAstrometry VMCDR2 SDSS system spherical co-ordinate 2 of device centre float 8 Degrees -0.9999995e9 pos
eta CurrentAstrometry VMCDR3 SDSS system spherical co-ordinate 2 of device centre float 8 Degrees -0.9999995e9 pos
eta CurrentAstrometry VMCDR4 SDSS system spherical co-ordinate 2 of device centre float 8 Degrees -0.9999995e9 pos
eta CurrentAstrometry VMCv20110816 SDSS system spherical co-ordinate 2 of device centre float 8 Degrees -0.9999995e9 pos
eta CurrentAstrometry VMCv20110909 SDSS system spherical co-ordinate 2 of device centre float 8 Degrees -0.9999995e9 pos
eta CurrentAstrometry VMCv20120126 SDSS system spherical co-ordinate 2 of device centre float 8 Degrees -0.9999995e9 pos
eta CurrentAstrometry VMCv20121128 SDSS system spherical co-ordinate 2 of device centre float 8 Degrees -0.9999995e9 pos
eta CurrentAstrometry VMCv20130304 SDSS system spherical co-ordinate 2 of device centre float 8 Degrees -0.9999995e9 pos
eta CurrentAstrometry VMCv20130805 SDSS system spherical co-ordinate 2 of device centre float 8 Degrees -0.9999995e9 pos
eta CurrentAstrometry VMCv20140428 SDSS system spherical co-ordinate 2 of device centre float 8 Degrees -0.9999995e9 pos
eta CurrentAstrometry VMCv20140903 SDSS system spherical co-ordinate 2 of device centre float 8 Degrees -0.9999995e9 pos
eta CurrentAstrometry VMCv20150309 SDSS system spherical co-ordinate 2 of device centre float 8 Degrees -0.9999995e9 pos
eta CurrentAstrometry VMCv20151218 SDSS system spherical co-ordinate 2 of device centre float 8 Degrees -0.9999995e9 pos
eta CurrentAstrometry VMCv20160311 SDSS system spherical co-ordinate 2 of device centre float 8 Degrees -0.9999995e9 pos
eta CurrentAstrometry VMCv20160822 SDSS system spherical co-ordinate 2 of device centre float 8 Degrees -0.9999995e9 pos
eta CurrentAstrometry VMCv20170109 SDSS system spherical co-ordinate 2 of device centre float 8 Degrees -0.9999995e9 pos
eta CurrentAstrometry VMCv20170411 SDSS system spherical co-ordinate 2 of device centre float 8 Degrees -0.9999995e9 pos
eta CurrentAstrometry VMCv20171101 SDSS system spherical co-ordinate 2 of device centre float 8 Degrees -0.9999995e9 pos
eta CurrentAstrometry VMCv20180702 SDSS system spherical co-ordinate 2 of device centre float 8 Degrees -0.9999995e9 pos
eta CurrentAstrometry VMCv20181120 SDSS system spherical co-ordinate 2 of device centre float 8 Degrees -0.9999995e9 pos
eta CurrentAstrometry VVVDR4 SDSS system spherical co-ordinate 2 of device centre float 8 Degrees -0.9999995e9 pos
eta ultravistaCurrentAstrometry, vhsCurrentAstrometry, videoCurrentAstrometry, vikingCurrentAstrometry, vmcCurrentAstrometry, vvvCurrentAstrometry VSAQC SDSS system spherical co-ordinate 2 of device centre float 8 Degrees pos
eta vhsDetection VHSDR3 SDSS system spherical co-ordinate 2 float 8 Degrees   pos
eta vhsDetection VHSDR4 SDSS system spherical co-ordinate 2 float 8 Degrees   pos
eta vhsDetection VHSv20120926 SDSS system spherical co-ordinate 2 float 8 Degrees   pos
eta vhsDetection VHSv20130417 SDSS system spherical co-ordinate 2 float 8 Degrees   pos
eta vhsDetection VHSv20140409 SDSS system spherical co-ordinate 2 float 8 Degrees   pos
eta vhsDetection VHSv20150108 SDSS system spherical co-ordinate 2 float 8 Degrees   pos
eta vhsDetection VHSv20160114 SDSS system spherical co-ordinate 2 float 8 Degrees   pos
eta vhsDetection VHSv20160507 SDSS system spherical co-ordinate 2 float 8 Degrees   pos
eta vhsDetection VHSv20170630 SDSS system spherical co-ordinate 2 float 8 Degrees   pos
eta vhsDetection VHSv20171207 SDSS system spherical co-ordinate 2 float 8 Degrees   pos
eta vhsDetection VHSv20180419 SDSS system spherical co-ordinate 2 float 8 Degrees   pos
eta vhsDetection, vhsListRemeasurement, vhsSource, vhsSourceRemeasurement, vhsTilePawPrints VHSDR1 SDSS system spherical co-ordinate 2 float 8 Degrees   pos
eta vhsDetection, vhsSource, vhsTilePawPrints VHSDR2 SDSS system spherical co-ordinate 2 float 8 Degrees   pos
eta vhsTilePawTDOnly VHSDR1 SDSS system spherical co-ordinate 2 float 8 Degrees pos
eta vhsTilePawTDOnly VHSDR2 SDSS system spherical co-ordinate 2 float 8 Degrees pos
eta vhsTilePawTDOnly VHSDR3 SDSS system spherical co-ordinate 2 float 8 Degrees pos
eta vhsTilePawTDOnly VHSDR4 SDSS system spherical co-ordinate 2 float 8 Degrees pos
eta vhsTilePawTDOnly VHSv20120926 SDSS system spherical co-ordinate 2 float 8 Degrees pos
eta vhsTilePawTDOnly VHSv20130417 SDSS system spherical co-ordinate 2 float 8 Degrees pos
eta vhsTilePawTDOnly VHSv20140409 SDSS system spherical co-ordinate 2 float 8 Degrees pos
eta vhsTilePawTDOnly VHSv20150108 SDSS system spherical co-ordinate 2 float 8 Degrees pos
eta vhsTilePawTDOnly VHSv20160114 SDSS system spherical co-ordinate 2 float 8 Degrees pos
eta vhsTilePawTDOnly VHSv20160507 SDSS system spherical co-ordinate 2 float 8 Degrees pos
eta vhsTilePawTDOnly VHSv20170630 SDSS system spherical co-ordinate 2 float 8 Degrees pos
eta vhsTilePawTDOnly VHSv20171207 SDSS system spherical co-ordinate 2 float 8 Degrees pos
eta vhsTilePawTDOnly VHSv20180419 SDSS system spherical co-ordinate 2 float 8 Degrees pos
eta videoDetection VIDEODR3 SDSS system spherical co-ordinate 2 float 8 Degrees   pos
eta videoDetection VIDEODR4 SDSS system spherical co-ordinate 2 float 8 Degrees   pos
eta videoDetection VIDEODR5 SDSS system spherical co-ordinate 2 float 8 Degrees   pos
eta videoDetection VIDEOv20111208 SDSS system spherical co-ordinate 2 float 8 Degrees   pos
eta videoDetection, videoListRemeasurement, videoSourceRemeasurement VIDEOv20100513 SDSS system spherical co-ordinate 2 float 8 Degrees   pos
eta videoDetection, videoSource, videoTilePawPrints VIDEODR2 SDSS system spherical co-ordinate 2 float 8 Degrees   pos
eta videoTilePawTDOnly VIDEODR2 SDSS system spherical co-ordinate 2 float 8 Degrees pos
eta videoTilePawTDOnly VIDEODR3 SDSS system spherical co-ordinate 2 float 8 Degrees pos
eta videoTilePawTDOnly VIDEODR4 SDSS system spherical co-ordinate 2 float 8 Degrees pos
eta videoTilePawTDOnly VIDEODR5 SDSS system spherical co-ordinate 2 float 8 Degrees pos
eta videoTilePawTDOnly VIDEOv20111208 SDSS system spherical co-ordinate 2 float 8 Degrees pos
eta vikingDetection VIKINGDR3 SDSS system spherical co-ordinate 2 float 8 Degrees   pos
eta vikingDetection VIKINGDR4 SDSS system spherical co-ordinate 2 float 8 Degrees   pos
eta vikingDetection VIKINGv20111019 SDSS system spherical co-ordinate 2 float 8 Degrees   pos
eta vikingDetection VIKINGv20130417 SDSS system spherical co-ordinate 2 float 8 Degrees   pos
eta vikingDetection VIKINGv20140402 SDSS system spherical co-ordinate 2 float 8 Degrees   pos
eta vikingDetection VIKINGv20150421 SDSS system spherical co-ordinate 2 float 8 Degrees   pos
eta vikingDetection VIKINGv20151230 SDSS system spherical co-ordinate 2 float 8 Degrees   pos
eta vikingDetection VIKINGv20160406 SDSS system spherical co-ordinate 2 float 8 Degrees   pos
eta vikingDetection VIKINGv20161202 SDSS system spherical co-ordinate 2 float 8 Degrees   pos
eta vikingDetection VIKINGv20170715 SDSS system spherical co-ordinate 2 float 8 Degrees   pos
eta vikingDetection VIKINGv20181012 SDSS system spherical co-ordinate 2 float 8 Degrees   pos
eta vikingDetection, vikingListRemeasurement, vikingSourceRemeasurement VIKINGv20110714 SDSS system spherical co-ordinate 2 float 8 Degrees   pos
eta vikingDetection, vikingSource, vikingTilePawPrints VIKINGDR2 SDSS system spherical co-ordinate 2 float 8 Degrees   pos
eta vikingMapRemeasAver VIKINGZYSELJv20170124 SDSS system spherical co-ordinate 2 float 8 Degrees   pos
eta vikingMapRemeasAver, vikingMapRemeasurement VIKINGZYSELJv20160909 SDSS system spherical co-ordinate 2 float 8 Degrees   pos
eta vikingTilePawTDOnly VIKINGDR2 SDSS system spherical co-ordinate 2 float 8 Degrees pos
eta vikingTilePawTDOnly VIKINGDR3 SDSS system spherical co-ordinate 2 float 8 Degrees pos
eta vikingTilePawTDOnly VIKINGDR4 SDSS system spherical co-ordinate 2 float 8 Degrees pos
eta vikingTilePawTDOnly VIKINGv20111019 SDSS system spherical co-ordinate 2 float 8 Degrees pos
eta vikingTilePawTDOnly VIKINGv20130417 SDSS system spherical co-ordinate 2 float 8 Degrees pos
eta vikingTilePawTDOnly VIKINGv20140402 SDSS system spherical co-ordinate 2 float 8 Degrees pos
eta vikingTilePawTDOnly VIKINGv20150421 SDSS system spherical co-ordinate 2 float 8 Degrees pos
eta vikingTilePawTDOnly VIKINGv20151230 SDSS system spherical co-ordinate 2 float 8 Degrees pos
eta vikingTilePawTDOnly VIKINGv20160406 SDSS system spherical co-ordinate 2 float 8 Degrees pos
eta vikingTilePawTDOnly VIKINGv20161202 SDSS system spherical co-ordinate 2 float 8 Degrees pos
eta vikingTilePawTDOnly VIKINGv20170715 SDSS system spherical co-ordinate 2 float 8 Degrees pos
eta vikingTilePawTDOnly VIKINGv20181012 SDSS system spherical co-ordinate 2 float 8 Degrees pos
eta vikingZY_selJ_SourceRemeasurement VIKINGZYSELJv20160909 SDSS system spherical co-ordinate 2 of aperture float 8 Degrees   pos
eta vikingZY_selJ_SourceRemeasurement VIKINGZYSELJv20170124 SDSS system spherical co-ordinate 2 of aperture float 8 Degrees   pos
eta vmcDetection VMCDR2 SDSS system spherical co-ordinate 2 float 8 Degrees   pos
eta vmcDetection VMCDR3 SDSS system spherical co-ordinate 2 float 8 Degrees   pos
eta vmcDetection VMCDR4 SDSS system spherical co-ordinate 2 float 8 Degrees   pos
eta vmcDetection VMCv20110909 SDSS system spherical co-ordinate 2 float 8 Degrees   pos
eta vmcDetection VMCv20120126 SDSS system spherical co-ordinate 2 float 8 Degrees   pos
eta vmcDetection VMCv20121128 SDSS system spherical co-ordinate 2 float 8 Degrees   pos
eta vmcDetection VMCv20130304 SDSS system spherical co-ordinate 2 float 8 Degrees   pos
eta vmcDetection VMCv20130805 SDSS system spherical co-ordinate 2 float 8 Degrees   pos
eta vmcDetection VMCv20140428 SDSS system spherical co-ordinate 2 float 8 Degrees   pos
eta vmcDetection VMCv20140903 SDSS system spherical co-ordinate 2 float 8 Degrees   pos
eta vmcDetection VMCv20150309 SDSS system spherical co-ordinate 2 float 8 Degrees   pos
eta vmcDetection VMCv20151218 SDSS system spherical co-ordinate 2 float 8 Degrees   pos
eta vmcDetection VMCv20160311 SDSS system spherical co-ordinate 2 float 8 Degrees   pos
eta vmcDetection VMCv20160822 SDSS system spherical co-ordinate 2 float 8 Degrees   pos
eta vmcDetection VMCv20170109 SDSS system spherical co-ordinate 2 float 8 Degrees   pos
eta vmcDetection VMCv20170411 SDSS system spherical co-ordinate 2 float 8 Degrees   pos
eta vmcDetection VMCv20171101 SDSS system spherical co-ordinate 2 float 8 Degrees   pos
eta vmcDetection VMCv20180702 SDSS system spherical co-ordinate 2 float 8 Degrees   pos
eta vmcDetection VMCv20181120 SDSS system spherical co-ordinate 2 float 8 Degrees   pos
eta vmcDetection, vmcListRemeasurement, vmcSourceRemeasurement VMCv20110816 SDSS system spherical co-ordinate 2 float 8 Degrees   pos
eta vmcDetection, vmcSource, vmcSynopticSource, vmcTilePawPrints VMCDR1 SDSS system spherical co-ordinate 2 float 8 Degrees   pos
eta vmcTilePawTDOnly VMCDR1 SDSS system spherical co-ordinate 2 float 8 Degrees pos
eta vmcTilePawTDOnly VMCDR2 SDSS system spherical co-ordinate 2 float 8 Degrees pos
eta vmcTilePawTDOnly VMCDR3 SDSS system spherical co-ordinate 2 float 8 Degrees pos
eta vmcTilePawTDOnly VMCDR4 SDSS system spherical co-ordinate 2 float 8 Degrees pos
eta vmcTilePawTDOnly VMCv20110816 SDSS system spherical co-ordinate 2 float 8 Degrees pos
eta vmcTilePawTDOnly VMCv20110909 SDSS system spherical co-ordinate 2 float 8 Degrees pos
eta vmcTilePawTDOnly VMCv20120126 SDSS system spherical co-ordinate 2 float 8 Degrees pos
eta vmcTilePawTDOnly VMCv20121128 SDSS system spherical co-ordinate 2 float 8 Degrees pos
eta vmcTilePawTDOnly VMCv20130304 SDSS system spherical co-ordinate 2 float 8 Degrees pos
eta vmcTilePawTDOnly VMCv20130805 SDSS system spherical co-ordinate 2 float 8 Degrees pos
eta vmcTilePawTDOnly VMCv20140428 SDSS system spherical co-ordinate 2 float 8 Degrees pos
eta vmcTilePawTDOnly VMCv20140903 SDSS system spherical co-ordinate 2 float 8 Degrees pos
eta vmcTilePawTDOnly VMCv20150309 SDSS system spherical co-ordinate 2 float 8 Degrees pos
eta vmcTilePawTDOnly VMCv20151218 SDSS system spherical co-ordinate 2 float 8 Degrees pos
eta vmcTilePawTDOnly VMCv20160311 SDSS system spherical co-ordinate 2 float 8 Degrees pos
eta vmcTilePawTDOnly VMCv20160822 SDSS system spherical co-ordinate 2 float 8 Degrees pos
eta vmcTilePawTDOnly VMCv20170109 SDSS system spherical co-ordinate 2 float 8 Degrees pos
eta vmcTilePawTDOnly VMCv20170411 SDSS system spherical co-ordinate 2 float 8 Degrees pos
eta vmcTilePawTDOnly VMCv20171101 SDSS system spherical co-ordinate 2 float 8 Degrees pos
eta vmcTilePawTDOnly VMCv20180702 SDSS system spherical co-ordinate 2 float 8 Degrees pos
eta vmcTilePawTDOnly VMCv20181120 SDSS system spherical co-ordinate 2 float 8 Degrees pos
eta vvvDetection, vvvSource, vvvSynopticSource, vvvTilePawPrints VVVDR4 SDSS system spherical co-ordinate 2 float 8 Degrees   pos
eta vvvTilePawTDOnly VVVDR4 SDSS system spherical co-ordinate 2 float 8 Degrees pos
ETA_TYPE mgcGalaxyStruct MGC 2dFGRS Eta type real 4   -99.9  
eTeff_IR ravedr5Source RAVE Error of effective temperature from infrared flux method real 4 K   stat.error;phys.temperature.effective
eTeff_K ravedr5Source RAVE Effective Temperature error float 8 K   stat.error;phys.temperature.effective
evi vmcCepheidVariables VMCDR3 The dust extinction value E(V-I) {catalogue TType keyword: E(V-I)} real 4 mag -0.9999995e9 phys.absorption.gal
evi vmcCepheidVariables VMCv20121128 The dust extinction value E(V-I) {catalogue TType keyword: E(V-I)} real 4 mag -0.9999995e9 phys.absorption.gal
evi vmcCepheidVariables VMCv20140428 The dust extinction value E(V-I) {catalogue TType keyword: E(V-I)} real 4 mag -0.9999995e9 phys.absorption.gal
evi vmcCepheidVariables VMCv20140903 The dust extinction value E(V-I) {catalogue TType keyword: E(V-I)} real 4 mag -0.9999995e9 phys.absorption.gal
evi vmcCepheidVariables VMCv20150309 The dust extinction value E(V-I) {catalogue TType keyword: E(V-I)} real 4 mag -0.9999995e9 phys.absorption.gal
evi vmcCepheidVariables VMCv20151218 The dust extinction value E(V-I) {catalogue TType keyword: E(V-I)} real 4 mag -0.9999995e9 phys.absorption.gal
evi vmcCepheidVariables VMCv20160311 The dust extinction value E(V-I) {catalogue TType keyword: E(V-I)} real 4 mag -0.9999995e9 phys.absorption.gal
evi vmcCepheidVariables VMCv20160822 The dust extinction value E(V-I) {catalogue TType keyword: E(V-I)} real 4 mag -0.9999995e9 phys.absorption.gal
evi vmcCepheidVariables, vmcRRlyraeVariables VMCDR4 The dust extinction value E(V-I) {catalogue TType keyword: E(V-I)} real 4 mag -0.9999995e9 phys.absorption.gal
eVmag_APASSDR9 ravedr5Source RAVE error V magnitude from APASSDR9 real 4 mag   stat.error;phot.mag;em.opt.V
evolStatus ogle3LpvLmcSource, ogle3LpvSmcSource OGLE Evolutionary status (RGB, AGB) varchar 3     meta.code.status;time.age
eVTmag_TYCHO2 ravedr5Source RAVE Error of VT magnitude from TYCHO2 real 4 mag   stat.error;phot.mag;em.opt.V
eW1mag_ALLWISE ravedr5Source RAVE Error W1 magnitude from ALLWISE real 4 mag   stat.error;phot.mag;em.opt
eW2mag_ALLWISE ravedr5Source RAVE Error W2 magnitude from ALLWISE real 4 mag   stat.error;phot.mag;em.opt
eW3mag_ALLWISE ravedr5Source RAVE Error W3 magnitude from ALLWISE real 4 mag   stat.error;phot.mag;em.opt
eW4mag_ALLWISE ravedr5Source RAVE Error W4 magnitude from ALLWISE real 4 mag   stat.error;phot.mag;em.opt
EXP_R spectra SIXDF R reference frame exposure time seconds real 4 seconds    
EXP_V spectra SIXDF V reference frame exposure time seconds real 4 seconds    
expAstErr videoVariability VIDEODR2 Rms calculated from polynomial fit to minimum astrometric RMS as a function of magnitude real 4 arcsec -0.9999995e9  
The Variability table contains statistics from the set of observations of each source. At present, the mean ra and dec and the error in two tangential directions are calculated. The "ra" direction is defined as tangential to both the radial direction and the cartesian z-axis and the "dec" direction is defined as both the radial direction and the "ra" direction. Since the current model is just the mean and standard deviation of the data, then the chi-squared of the fit=1. Data from good frames across all bands go into the astrometric model determination. This will include bands in non-synoptic filters: the one observation in these bands can help. In future releases a fit will be made to the rms data as a function of magnitude in each band, as has already happened for photometric data and a motion model that incorporates proper motion (and possibly parallax) will be used. The motion model is a parameter in the VarFrameSetInfo table.
expAstErr videoVariability VIDEODR3 Rms calculated from polynomial fit to minimum astrometric RMS as a function of magnitude real 4 arcsec -0.9999995e9 stat.error
The Variability table contains statistics from the set of observations of each source. At present, the mean ra and dec and the error in two tangential directions are calculated. The "ra" direction is defined as tangential to both the radial direction and the cartesian z-axis and the "dec" direction is defined as both the radial direction and the "ra" direction. Since the current model is just the mean and standard deviation of the data, then the chi-squared of the fit=1. Data from good frames across all bands go into the astrometric model determination. This will include bands in non-synoptic filters: the one observation in these bands can help. In future releases a fit will be made to the rms data as a function of magnitude in each band, as has already happened for photometric data and a motion model that incorporates proper motion (and possibly parallax) will be used. The motion model is a parameter in the VarFrameSetInfo table.
expAstErr videoVariability VIDEODR4 Rms calculated from polynomial fit to minimum astrometric RMS as a function of magnitude real 4 arcsec -0.9999995e9 stat.error
The Variability table contains statistics from the set of observations of each source. At present, the mean ra and dec and the error in two tangential directions are calculated. The "ra" direction is defined as tangential to both the radial direction and the cartesian z-axis and the "dec" direction is defined as both the radial direction and the "ra" direction. Since the current model is just the mean and standard deviation of the data, then the chi-squared of the fit=1. Data from good frames across all bands go into the astrometric model determination. This will include bands in non-synoptic filters: the one observation in these bands can help. In future releases a fit will be made to the rms data as a function of magnitude in each band, as has already happened for photometric data and a motion model that incorporates proper motion (and possibly parallax) will be used. The motion model is a parameter in the VarFrameSetInfo table.
expAstErr videoVariability VIDEODR5 Rms calculated from polynomial fit to minimum astrometric RMS as a function of magnitude real 4 arcsec -0.9999995e9 stat.error
The Variability table contains statistics from the set of observations of each source. At present, the mean ra and dec and the error in two tangential directions are calculated. The "ra" direction is defined as tangential to both the radial direction and the cartesian z-axis and the "dec" direction is defined as both the radial direction and the "ra" direction. Since the current model is just the mean and standard deviation of the data, then the chi-squared of the fit=1. Data from good frames across all bands go into the astrometric model determination. This will include bands in non-synoptic filters: the one observation in these bands can help. In future releases a fit will be made to the rms data as a function of magnitude in each band, as has already happened for photometric data and a motion model that incorporates proper motion (and possibly parallax) will be used. The motion model is a parameter in the VarFrameSetInfo table.
expAstErr videoVariability VIDEOv20100513 Rms calculated from polynomial fit to minimum astrometric RMS as a function of magnitude real 4 arcsec -0.9999995e9  
The Variability table contains statistics from the set of observations of each source. At present, the mean ra and dec and the error in two tangential directions are calculated. The "ra" direction is defined as tangential to both the radial direction and the cartesian z-axis and the "dec" direction is defined as both the radial direction and the "ra" direction. Since the current model is just the mean and standard deviation of the data, then the chi-squared of the fit=1. Data from good frames across all bands go into the astrometric model determination. This will include bands in non-synoptic filters: the one observation in these bands can help. In future releases a fit will be made to the rms data as a function of magnitude in each band, as has already happened for photometric data and a motion model that incorporates proper motion (and possibly parallax) will be used. The motion model is a parameter in the VarFrameSetInfo table.
expAstErr videoVariability VIDEOv20111208 Rms calculated from polynomial fit to minimum astrometric RMS as a function of magnitude real 4 arcsec -0.9999995e9  
The Variability table contains statistics from the set of observations of each source. At present, the mean ra and dec and the error in two tangential directions are calculated. The "ra" direction is defined as tangential to both the radial direction and the cartesian z-axis and the "dec" direction is defined as both the radial direction and the "ra" direction. Since the current model is just the mean and standard deviation of the data, then the chi-squared of the fit=1. Data from good frames across all bands go into the astrometric model determination. This will include bands in non-synoptic filters: the one observation in these bands can help. In future releases a fit will be made to the rms data as a function of magnitude in each band, as has already happened for photometric data and a motion model that incorporates proper motion (and possibly parallax) will be used. The motion model is a parameter in the VarFrameSetInfo table.
expAstErr vikingVariability VIKINGDR2 Rms calculated from polynomial fit to minimum astrometric RMS as a function of magnitude real 4 arcsec -0.9999995e9  
The Variability table contains statistics from the set of observations of each source. At present, the mean ra and dec and the error in two tangential directions are calculated. The "ra" direction is defined as tangential to both the radial direction and the cartesian z-axis and the "dec" direction is defined as both the radial direction and the "ra" direction. Since the current model is just the mean and standard deviation of the data, then the chi-squared of the fit=1. Data from good frames across all bands go into the astrometric model determination. This will include bands in non-synoptic filters: the one observation in these bands can help. In future releases a fit will be made to the rms data as a function of magnitude in each band, as has already happened for photometric data and a motion model that incorporates proper motion (and possibly parallax) will be used. The motion model is a parameter in the VarFrameSetInfo table.
expAstErr vikingVariability VIKINGDR3 Rms calculated from polynomial fit to minimum astrometric RMS as a function of magnitude real 4 arcsec -0.9999995e9 stat.error
The Variability table contains statistics from the set of observations of each source. At present, the mean ra and dec and the error in two tangential directions are calculated. The "ra" direction is defined as tangential to both the radial direction and the cartesian z-axis and the "dec" direction is defined as both the radial direction and the "ra" direction. Since the current model is just the mean and standard deviation of the data, then the chi-squared of the fit=1. Data from good frames across all bands go into the astrometric model determination. This will include bands in non-synoptic filters: the one observation in these bands can help. In future releases a fit will be made to the rms data as a function of magnitude in each band, as has already happened for photometric data and a motion model that incorporates proper motion (and possibly parallax) will be used. The motion model is a parameter in the VarFrameSetInfo table.
expAstErr vikingVariability VIKINGDR4 Rms calculated from polynomial fit to minimum astrometric RMS as a function of magnitude real 4 arcsec -0.9999995e9 stat.error
The Variability table contains statistics from the set of observations of each source. At present, the mean ra and dec and the error in two tangential directions are calculated. The "ra" direction is defined as tangential to both the radial direction and the cartesian z-axis and the "dec" direction is defined as both the radial direction and the "ra" direction. Since the current model is just the mean and standard deviation of the data, then the chi-squared of the fit=1. Data from good frames across all bands go into the astrometric model determination. This will include bands in non-synoptic filters: the one observation in these bands can help. In future releases a fit will be made to the rms data as a function of magnitude in each band, as has already happened for photometric data and a motion model that incorporates proper motion (and possibly parallax) will be used. The motion model is a parameter in the VarFrameSetInfo table.
expAstErr vikingVariability VIKINGv20110714 Rms calculated from polynomial fit to minimum astrometric RMS as a function of magnitude real 4 arcsec -0.9999995e9  
The Variability table contains statistics from the set of observations of each source. At present, the mean ra and dec and the error in two tangential directions are calculated. The "ra" direction is defined as tangential to both the radial direction and the cartesian z-axis and the "dec" direction is defined as both the radial direction and the "ra" direction. Since the current model is just the mean and standard deviation of the data, then the chi-squared of the fit=1. Data from good frames across all bands go into the astrometric model determination. This will include bands in non-synoptic filters: the one observation in these bands can help. In future releases a fit will be made to the rms data as a function of magnitude in each band, as has already happened for photometric data and a motion model that incorporates proper motion (and possibly parallax) will be used. The motion model is a parameter in the VarFrameSetInfo table.
expAstErr vikingVariability VIKINGv20111019 Rms calculated from polynomial fit to minimum astrometric RMS as a function of magnitude real 4 arcsec -0.9999995e9  
The Variability table contains statistics from the set of observations of each source. At present, the mean ra and dec and the error in two tangential directions are calculated. The "ra" direction is defined as tangential to both the radial direction and the cartesian z-axis and the "dec" direction is defined as both the radial direction and the "ra" direction. Since the current model is just the mean and standard deviation of the data, then the chi-squared of the fit=1. Data from good frames across all bands go into the astrometric model determination. This will include bands in non-synoptic filters: the one observation in these bands can help. In future releases a fit will be made to the rms data as a function of magnitude in each band, as has already happened for photometric data and a motion model that incorporates proper motion (and possibly parallax) will be used. The motion model is a parameter in the VarFrameSetInfo table.
expAstErr vikingVariability VIKINGv20130417 Rms calculated from polynomial fit to minimum astrometric RMS as a function of magnitude real 4 arcsec -0.9999995e9 stat.error
The Variability table contains statistics from the set of observations of each source. At present, the mean ra and dec and the error in two tangential directions are calculated. The "ra" direction is defined as tangential to both the radial direction and the cartesian z-axis and the "dec" direction is defined as both the radial direction and the "ra" direction. Since the current model is just the mean and standard deviation of the data, then the chi-squared of the fit=1. Data from good frames across all bands go into the astrometric model determination. This will include bands in non-synoptic filters: the one observation in these bands can help. In future releases a fit will be made to the rms data as a function of magnitude in each band, as has already happened for photometric data and a motion model that incorporates proper motion (and possibly parallax) will be used. The motion model is a parameter in the VarFrameSetInfo table.
expAstErr vikingVariability VIKINGv20140402 Rms calculated from polynomial fit to minimum astrometric RMS as a function of magnitude real 4 arcsec -0.9999995e9 stat.error
The Variability table contains statistics from the set of observations of each source. At present, the mean ra and dec and the error in two tangential directions are calculated. The "ra" direction is defined as tangential to both the radial direction and the cartesian z-axis and the "dec" direction is defined as both the radial direction and the "ra" direction. Since the current model is just the mean and standard deviation of the data, then the chi-squared of the fit=1. Data from good frames across all bands go into the astrometric model determination. This will include bands in non-synoptic filters: the one observation in these bands can help. In future releases a fit will be made to the rms data as a function of magnitude in each band, as has already happened for photometric data and a motion model that incorporates proper motion (and possibly parallax) will be used. The motion model is a parameter in the VarFrameSetInfo table.
expAstErr vikingVariability VIKINGv20150421 Rms calculated from polynomial fit to minimum astrometric RMS as a function of magnitude real 4 arcsec -0.9999995e9 stat.error
The Variability table contains statistics from the set of observations of each source. At present, the mean ra and dec and the error in two tangential directions are calculated. The "ra" direction is defined as tangential to both the radial direction and the cartesian z-axis and the "dec" direction is defined as both the radial direction and the "ra" direction. Since the current model is just the mean and standard deviation of the data, then the chi-squared of the fit=1. Data from good frames across all bands go into the astrometric model determination. This will include bands in non-synoptic filters: the one observation in these bands can help. In future releases a fit will be made to the rms data as a function of magnitude in each band, as has already happened for photometric data and a motion model that incorporates proper motion (and possibly parallax) will be used. The motion model is a parameter in the VarFrameSetInfo table.
expAstErr vikingVariability VIKINGv20151230 Rms calculated from polynomial fit to minimum astrometric RMS as a function of magnitude real 4 arcsec -0.9999995e9 stat.error
The Variability table contains statistics from the set of observations of each source. At present, the mean ra and dec and the error in two tangential directions are calculated. The "ra" direction is defined as tangential to both the radial direction and the cartesian z-axis and the "dec" direction is defined as both the radial direction and the "ra" direction. Since the current model is just the mean and standard deviation of the data, then the chi-squared of the fit=1. Data from good frames across all bands go into the astrometric model determination. This will include bands in non-synoptic filters: the one observation in these bands can help. In future releases a fit will be made to the rms data as a function of magnitude in each band, as has already happened for photometric data and a motion model that incorporates proper motion (and possibly parallax) will be used. The motion model is a parameter in the VarFrameSetInfo table.
expAstErr vikingVariability VIKINGv20160406 Rms calculated from polynomial fit to minimum astrometric RMS as a function of magnitude real 4 arcsec -0.9999995e9 stat.error
The Variability table contains statistics from the set of observations of each source. At present, the mean ra and dec and the error in two tangential directions are calculated. The "ra" direction is defined as tangential to both the radial direction and the cartesian z-axis and the "dec" direction is defined as both the radial direction and the "ra" direction. Since the current model is just the mean and standard deviation of the data, then the chi-squared of the fit=1. Data from good frames across all bands go into the astrometric model determination. This will include bands in non-synoptic filters: the one observation in these bands can help. In future releases a fit will be made to the rms data as a function of magnitude in each band, as has already happened for photometric data and a motion model that incorporates proper motion (and possibly parallax) will be used. The motion model is a parameter in the VarFrameSetInfo table.
expAstErr vikingVariability VIKINGv20161202 Rms calculated from polynomial fit to minimum astrometric RMS as a function of magnitude real 4 arcsec -0.9999995e9 stat.error
The Variability table contains statistics from the set of observations of each source. At present, the mean ra and dec and the error in two tangential directions are calculated. The "ra" direction is defined as tangential to both the radial direction and the cartesian z-axis and the "dec" direction is defined as both the radial direction and the "ra" direction. Since the current model is just the mean and standard deviation of the data, then the chi-squared of the fit=1. Data from good frames across all bands go into the astrometric model determination. This will include bands in non-synoptic filters: the one observation in these bands can help. In future releases a fit will be made to the rms data as a function of magnitude in each band, as has already happened for photometric data and a motion model that incorporates proper motion (and possibly parallax) will be used. The motion model is a parameter in the VarFrameSetInfo table.
expAstErr vikingVariability VIKINGv20170715 Rms calculated from polynomial fit to minimum astrometric RMS as a function of magnitude real 4 arcsec -0.9999995e9 stat.error
The Variability table contains statistics from the set of observations of each source. At present, the mean ra and dec and the error in two tangential directions are calculated. The "ra" direction is defined as tangential to both the radial direction and the cartesian z-axis and the "dec" direction is defined as both the radial direction and the "ra" direction. Since the current model is just the mean and standard deviation of the data, then the chi-squared of the fit=1. Data from good frames across all bands go into the astrometric model determination. This will include bands in non-synoptic filters: the one observation in these bands can help. In future releases a fit will be made to the rms data as a function of magnitude in each band, as has already happened for photometric data and a motion model that incorporates proper motion (and possibly parallax) will be used. The motion model is a parameter in the VarFrameSetInfo table.
expAstErr vikingVariability VIKINGv20181012 Rms calculated from polynomial fit to minimum astrometric RMS as a function of magnitude real 4 arcsec -0.9999995e9 stat.error
The Variability table contains statistics from the set of observations of each source. At present, the mean ra and dec and the error in two tangential directions are calculated. The "ra" direction is defined as tangential to both the radial direction and the cartesian z-axis and the "dec" direction is defined as both the radial direction and the "ra" direction. Since the current model is just the mean and standard deviation of the data, then the chi-squared of the fit=1. Data from good frames across all bands go into the astrometric model determination. This will include bands in non-synoptic filters: the one observation in these bands can help. In future releases a fit will be made to the rms data as a function of magnitude in each band, as has already happened for photometric data and a motion model that incorporates proper motion (and possibly parallax) will be used. The motion model is a parameter in the VarFrameSetInfo table.
expAstErr vmcVariability VMCDR1 Rms calculated from polynomial fit to minimum astrometric RMS as a function of magnitude real 4 arcsec -0.9999995e9  
The Variability table contains statistics from the set of observations of each source. At present, the mean ra and dec and the error in two tangential directions are calculated. The "ra" direction is defined as tangential to both the radial direction and the cartesian z-axis and the "dec" direction is defined as both the radial direction and the "ra" direction. Since the current model is just the mean and standard deviation of the data, then the chi-squared of the fit=1. Data from good frames across all bands go into the astrometric model determination. This will include bands in non-synoptic filters: the one observation in these bands can help. In future releases a fit will be made to the rms data as a function of magnitude in each band, as has already happened for photometric data and a motion model that incorporates proper motion (and possibly parallax) will be used. The motion model is a parameter in the VarFrameSetInfo table.
expAstErr vmcVariability VMCDR2 Rms calculated from polynomial fit to minimum astrometric RMS as a function of magnitude real 4 arcsec -0.9999995e9 stat.error
The Variability table contains statistics from the set of observations of each source. At present, the mean ra and dec and the error in two tangential directions are calculated. The "ra" direction is defined as tangential to both the radial direction and the cartesian z-axis and the "dec" direction is defined as both the radial direction and the "ra" direction. Since the current model is just the mean and standard deviation of the data, then the chi-squared of the fit=1. Data from good frames across all bands go into the astrometric model determination. This will include bands in non-synoptic filters: the one observation in these bands can help. In future releases a fit will be made to the rms data as a function of magnitude in each band, as has already happened for photometric data and a motion model that incorporates proper motion (and possibly parallax) will be used. The motion model is a parameter in the VarFrameSetInfo table.
expAstErr vmcVariability VMCDR3 Rms calculated from polynomial fit to minimum astrometric RMS as a function of magnitude real 4 arcsec -0.9999995e9 stat.error
The Variability table contains statistics from the set of observations of each source. At present, the mean ra and dec and the error in two tangential directions are calculated. The "ra" direction is defined as tangential to both the radial direction and the cartesian z-axis and the "dec" direction is defined as both the radial direction and the "ra" direction. Since the current model is just the mean and standard deviation of the data, then the chi-squared of the fit=1. Data from good frames across all bands go into the astrometric model determination. This will include bands in non-synoptic filters: the one observation in these bands can help. In future releases a fit will be made to the rms data as a function of magnitude in each band, as has already happened for photometric data and a motion model that incorporates proper motion (and possibly parallax) will be used. The motion model is a parameter in the VarFrameSetInfo table.
expAstErr vmcVariability VMCDR4 Rms calculated from polynomial fit to minimum astrometric RMS as a function of magnitude real 4 arcsec -0.9999995e9 stat.error
The Variability table contains statistics from the set of observations of each source. At present, the mean ra and dec and the error in two tangential directions are calculated. The "ra" direction is defined as tangential to both the radial direction and the cartesian z-axis and the "dec" direction is defined as both the radial direction and the "ra" direction. Since the current model is just the mean and standard deviation of the data, then the chi-squared of the fit=1. Data from good frames across all bands go into the astrometric model determination. This will include bands in non-synoptic filters: the one observation in these bands can help. In future releases a fit will be made to the rms data as a function of magnitude in each band, as has already happened for photometric data and a motion model that incorporates proper motion (and possibly parallax) will be used. The motion model is a parameter in the VarFrameSetInfo table.
expAstErr vmcVariability VMCv20110816 Rms calculated from polynomial fit to minimum astrometric RMS as a function of magnitude real 4 arcsec -0.9999995e9  
The Variability table contains statistics from the set of observations of each source. At present, the mean ra and dec and the error in two tangential directions are calculated. The "ra" direction is defined as tangential to both the radial direction and the cartesian z-axis and the "dec" direction is defined as both the radial direction and the "ra" direction. Since the current model is just the mean and standard deviation of the data, then the chi-squared of the fit=1. Data from good frames across all bands go into the astrometric model determination. This will include bands in non-synoptic filters: the one observation in these bands can help. In future releases a fit will be made to the rms data as a function of magnitude in each band, as has already happened for photometric data and a motion model that incorporates proper motion (and possibly parallax) will be used. The motion model is a parameter in the VarFrameSetInfo table.
expAstErr vmcVariability VMCv20110909 Rms calculated from polynomial fit to minimum astrometric RMS as a function of magnitude real 4 arcsec -0.9999995e9  
The Variability table contains statistics from the set of observations of each source. At present, the mean ra and dec and the error in two tangential directions are calculated. The "ra" direction is defined as tangential to both the radial direction and the cartesian z-axis and the "dec" direction is defined as both the radial direction and the "ra" direction. Since the current model is just the mean and standard deviation of the data, then the chi-squared of the fit=1. Data from good frames across all bands go into the astrometric model determination. This will include bands in non-synoptic filters: the one observation in these bands can help. In future releases a fit will be made to the rms data as a function of magnitude in each band, as has already happened for photometric data and a motion model that incorporates proper motion (and possibly parallax) will be used. The motion model is a parameter in the VarFrameSetInfo table.
expAstErr vmcVariability VMCv20120126 Rms calculated from polynomial fit to minimum astrometric RMS as a function of magnitude real 4 arcsec -0.9999995e9  
The Variability table contains statistics from the set of observations of each source. At present, the mean ra and dec and the error in two tangential directions are calculated. The "ra" direction is defined as tangential to both the radial direction and the cartesian z-axis and the "dec" direction is defined as both the radial direction and the "ra" direction. Since the current model is just the mean and standard deviation of the data, then the chi-squared of the fit=1. Data from good frames across all bands go into the astrometric model determination. This will include bands in non-synoptic filters: the one observation in these bands can help. In future releases a fit will be made to the rms data as a function of magnitude in each band, as has already happened for photometric data and a motion model that incorporates proper motion (and possibly parallax) will be used. The motion model is a parameter in the VarFrameSetInfo table.
expAstErr vmcVariability VMCv20121128 Rms calculated from polynomial fit to minimum astrometric RMS as a function of magnitude real 4 arcsec -0.9999995e9 stat.error
The Variability table contains statistics from the set of observations of each source. At present, the mean ra and dec and the error in two tangential directions are calculated. The "ra" direction is defined as tangential to both the radial direction and the cartesian z-axis and the "dec" direction is defined as both the radial direction and the "ra" direction. Since the current model is just the mean and standard deviation of the data, then the chi-squared of the fit=1. Data from good frames across all bands go into the astrometric model determination. This will include bands in non-synoptic filters: the one observation in these bands can help. In future releases a fit will be made to the rms data as a function of magnitude in each band, as has already happened for photometric data and a motion model that incorporates proper motion (and possibly parallax) will be used. The motion model is a parameter in the VarFrameSetInfo table.
expAstErr vmcVariability VMCv20130304 Rms calculated from polynomial fit to minimum astrometric RMS as a function of magnitude real 4 arcsec -0.9999995e9 stat.error
The Variability table contains statistics from the set of observations of each source. At present, the mean ra and dec and the error in two tangential directions are calculated. The "ra" direction is defined as tangential to both the radial direction and the cartesian z-axis and the "dec" direction is defined as both the radial direction and the "ra" direction. Since the current model is just the mean and standard deviation of the data, then the chi-squared of the fit=1. Data from good frames across all bands go into the astrometric model determination. This will include bands in non-synoptic filters: the one observation in these bands can help. In future releases a fit will be made to the rms data as a function of magnitude in each band, as has already happened for photometric data and a motion model that incorporates proper motion (and possibly parallax) will be used. The motion model is a parameter in the VarFrameSetInfo table.
expAstErr vmcVariability VMCv20130805 Rms calculated from polynomial fit to minimum astrometric RMS as a function of magnitude real 4 arcsec -0.9999995e9 stat.error
The Variability table contains statistics from the set of observations of each source. At present, the mean ra and dec and the error in two tangential directions are calculated. The "ra" direction is defined as tangential to both the radial direction and the cartesian z-axis and the "dec" direction is defined as both the radial direction and the "ra" direction. Since the current model is just the mean and standard deviation of the data, then the chi-squared of the fit=1. Data from good frames across all bands go into the astrometric model determination. This will include bands in non-synoptic filters: the one observation in these bands can help. In future releases a fit will be made to the rms data as a function of magnitude in each band, as has already happened for photometric data and a motion model that incorporates proper motion (and possibly parallax) will be used. The motion model is a parameter in the VarFrameSetInfo table.
expAstErr vmcVariability VMCv20140428 Rms calculated from polynomial fit to minimum astrometric RMS as a function of magnitude real 4 arcsec -0.9999995e9 stat.error
The Variability table contains statistics from the set of observations of each source. At present, the mean ra and dec and the error in two tangential directions are calculated. The "ra" direction is defined as tangential to both the radial direction and the cartesian z-axis and the "dec" direction is defined as both the radial direction and the "ra" direction. Since the current model is just the mean and standard deviation of the data, then the chi-squared of the fit=1. Data from good frames across all bands go into the astrometric model determination. This will include bands in non-synoptic filters: the one observation in these bands can help. In future releases a fit will be made to the rms data as a function of magnitude in each band, as has already happened for photometric data and a motion model that incorporates proper motion (and possibly parallax) will be used. The motion model is a parameter in the VarFrameSetInfo table.
expAstErr vmcVariability VMCv20140903 Rms calculated from polynomial fit to minimum astrometric RMS as a function of magnitude real 4 arcsec -0.9999995e9 stat.error
The Variability table contains statistics from the set of observations of each source. At present, the mean ra and dec and the error in two tangential directions are calculated. The "ra" direction is defined as tangential to both the radial direction and the cartesian z-axis and the "dec" direction is defined as both the radial direction and the "ra" direction. Since the current model is just the mean and standard deviation of the data, then the chi-squared of the fit=1. Data from good frames across all bands go into the astrometric model determination. This will include bands in non-synoptic filters: the one observation in these bands can help. In future releases a fit will be made to the rms data as a function of magnitude in each band, as has already happened for photometric data and a motion model that incorporates proper motion (and possibly parallax) will be used. The motion model is a parameter in the VarFrameSetInfo table.
expAstErr vmcVariability VMCv20150309 Rms calculated from polynomial fit to minimum astrometric RMS as a function of magnitude real 4 arcsec -0.9999995e9 stat.error
The Variability table contains statistics from the set of observations of each source. At present, the mean ra and dec and the error in two tangential directions are calculated. The "ra" direction is defined as tangential to both the radial direction and the cartesian z-axis and the "dec" direction is defined as both the radial direction and the "ra" direction. Since the current model is just the mean and standard deviation of the data, then the chi-squared of the fit=1. Data from good frames across all bands go into the astrometric model determination. This will include bands in non-synoptic filters: the one observation in these bands can help. In future releases a fit will be made to the rms data as a function of magnitude in each band, as has already happened for photometric data and a motion model that incorporates proper motion (and possibly parallax) will be used. The motion model is a parameter in the VarFrameSetInfo table.
expAstErr vmcVariability VMCv20151218 Rms calculated from polynomial fit to minimum astrometric RMS as a function of magnitude real 4 arcsec -0.9999995e9 stat.error
The Variability table contains statistics from the set of observations of each source. At present, the mean ra and dec and the error in two tangential directions are calculated. The "ra" direction is defined as tangential to both the radial direction and the cartesian z-axis and the "dec" direction is defined as both the radial direction and the "ra" direction. Since the current model is just the mean and standard deviation of the data, then the chi-squared of the fit=1. Data from good frames across all bands go into the astrometric model determination. This will include bands in non-synoptic filters: the one observation in these bands can help. In future releases a fit will be made to the rms data as a function of magnitude in each band, as has already happened for photometric data and a motion model that incorporates proper motion (and possibly parallax) will be used. The motion model is a parameter in the VarFrameSetInfo table.
expAstErr vmcVariability VMCv20160311 Rms calculated from polynomial fit to minimum astrometric RMS as a function of magnitude real 4 arcsec -0.9999995e9 stat.error
The Variability table contains statistics from the set of observations of each source. At present, the mean ra and dec and the error in two tangential directions are calculated. The "ra" direction is defined as tangential to both the radial direction and the cartesian z-axis and the "dec" direction is defined as both the radial direction and the "ra" direction. Since the current model is just the mean and standard deviation of the data, then the chi-squared of the fit=1. Data from good frames across all bands go into the astrometric model determination. This will include bands in non-synoptic filters: the one observation in these bands can help. In future releases a fit will be made to the rms data as a function of magnitude in each band, as has already happened for photometric data and a motion model that incorporates proper motion (and possibly parallax) will be used. The motion model is a parameter in the VarFrameSetInfo table.
expAstErr vmcVariability VMCv20160822 Rms calculated from polynomial fit to minimum astrometric RMS as a function of magnitude real 4 arcsec -0.9999995e9 stat.error
The Variability table contains statistics from the set of observations of each source. At present, the mean ra and dec and the error in two tangential directions are calculated. The "ra" direction is defined as tangential to both the radial direction and the cartesian z-axis and the "dec" direction is defined as both the radial direction and the "ra" direction. Since the current model is just the mean and standard deviation of the data, then the chi-squared of the fit=1. Data from good frames across all bands go into the astrometric model determination. This will include bands in non-synoptic filters: the one observation in these bands can help. In future releases a fit will be made to the rms data as a function of magnitude in each band, as has already happened for photometric data and a motion model that incorporates proper motion (and possibly parallax) will be used. The motion model is a parameter in the VarFrameSetInfo table.
expAstErr vmcVariability VMCv20170109 Rms calculated from polynomial fit to minimum astrometric RMS as a function of magnitude real 4 arcsec -0.9999995e9 stat.error
The Variability table contains statistics from the set of observations of each source. At present, the mean ra and dec and the error in two tangential directions are calculated. The "ra" direction is defined as tangential to both the radial direction and the cartesian z-axis and the "dec" direction is defined as both the radial direction and the "ra" direction. Since the current model is just the mean and standard deviation of the data, then the chi-squared of the fit=1. Data from good frames across all bands go into the astrometric model determination. This will include bands in non-synoptic filters: the one observation in these bands can help. In future releases a fit will be made to the rms data as a function of magnitude in each band, as has already happened for photometric data and a motion model that incorporates proper motion (and possibly parallax) will be used. The motion model is a parameter in the VarFrameSetInfo table.
expAstErr vmcVariability VMCv20170411 Rms calculated from polynomial fit to minimum astrometric RMS as a function of magnitude real 4 arcsec -0.9999995e9 stat.error
The Variability table contains statistics from the set of observations of each source. At present, the mean ra and dec and the error in two tangential directions are calculated. The "ra" direction is defined as tangential to both the radial direction and the cartesian z-axis and the "dec" direction is defined as both the radial direction and the "ra" direction. Since the current model is just the mean and standard deviation of the data, then the chi-squared of the fit=1. Data from good frames across all bands go into the astrometric model determination. This will include bands in non-synoptic filters: the one observation in these bands can help. In future releases a fit will be made to the rms data as a function of magnitude in each band, as has already happened for photometric data and a motion model that incorporates proper motion (and possibly parallax) will be used. The motion model is a parameter in the VarFrameSetInfo table.
expAstErr vmcVariability VMCv20171101 Rms calculated from polynomial fit to minimum astrometric RMS as a function of magnitude real 4 arcsec -0.9999995e9 stat.error
The Variability table contains statistics from the set of observations of each source. At present, the mean ra and dec and the error in two tangential directions are calculated. The "ra" direction is defined as tangential to both the radial direction and the cartesian z-axis and the "dec" direction is defined as both the radial direction and the "ra" direction. Since the current model is just the mean and standard deviation of the data, then the chi-squared of the fit=1. Data from good frames across all bands go into the astrometric model determination. This will include bands in non-synoptic filters: the one observation in these bands can help. In future releases a fit will be made to the rms data as a function of magnitude in each band, as has already happened for photometric data and a motion model that incorporates proper motion (and possibly parallax) will be used. The motion model is a parameter in the VarFrameSetInfo table.
expAstErr vmcVariability VMCv20180702 Rms calculated from polynomial fit to minimum astrometric RMS as a function of magnitude real 4 arcsec -0.9999995e9 stat.error
The Variability table contains statistics from the set of observations of each source. At present, the mean ra and dec and the error in two tangential directions are calculated. The "ra" direction is defined as tangential to both the radial direction and the cartesian z-axis and the "dec" direction is defined as both the radial direction and the "ra" direction. Since the current model is just the mean and standard deviation of the data, then the chi-squared of the fit=1. Data from good frames across all bands go into the astrometric model determination. This will include bands in non-synoptic filters: the one observation in these bands can help. In future releases a fit will be made to the rms data as a function of magnitude in each band, as has already happened for photometric data and a motion model that incorporates proper motion (and possibly parallax) will be used. The motion model is a parameter in the VarFrameSetInfo table.
expAstErr vmcVariability VMCv20181120 Rms calculated from polynomial fit to minimum astrometric RMS as a function of magnitude real 4 arcsec -0.9999995e9 stat.error
The Variability table contains statistics from the set of observations of each source. At present, the mean ra and dec and the error in two tangential directions are calculated. The "ra" direction is defined as tangential to both the radial direction and the cartesian z-axis and the "dec" direction is defined as both the radial direction and the "ra" direction. Since the current model is just the mean and standard deviation of the data, then the chi-squared of the fit=1. Data from good frames across all bands go into the astrometric model determination. This will include bands in non-synoptic filters: the one observation in these bands can help. In future releases a fit will be made to the rms data as a function of magnitude in each band, as has already happened for photometric data and a motion model that incorporates proper motion (and possibly parallax) will be used. The motion model is a parameter in the VarFrameSetInfo table.
expAstErr vvvVariability VVVDR4 Rms calculated from polynomial fit to minimum astrometric RMS as a function of magnitude real 4 arcsec -0.9999995e9 stat.error
The Variability table contains statistics from the set of observations of each source. At present, the mean ra and dec and the error in two tangential directions are calculated. The "ra" direction is defined as tangential to both the radial direction and the cartesian z-axis and the "dec" direction is defined as both the radial direction and the "ra" direction. Since the current model is just the mean and standard deviation of the data, then the chi-squared of the fit=1. Data from good frames across all bands go into the astrometric model determination. This will include bands in non-synoptic filters: the one observation in these bands can help. In future releases a fit will be made to the rms data as a function of magnitude in each band, as has already happened for photometric data and a motion model that incorporates proper motion (and possibly parallax) will be used. The motion model is a parameter in the VarFrameSetInfo table.
expTime Multiframe VHSDR1 Integration time per exposure (corrected to ndit = 1) {image primary HDU keyword: EXPTIME} real 4 seconds -0.9999995e9 time.duration;obs.exposure
expTime Multiframe VHSDR2 Integration time per exposure (corrected to ndit = 1) {image primary HDU keyword: EXPTIME} real 4 seconds -0.9999995e9 time.duration;obs.exposure
expTime Multiframe VHSDR3 Integration time per exposure (corrected to ndit = 1) {image primary HDU keyword: EXPTIME} real 4 seconds -0.9999995e9 time.duration;obs.exposure
expTime Multiframe VHSDR4 Integration time per exposure (corrected to ndit = 1) {image primary HDU keyword: EXPTIME} real 4 seconds -0.9999995e9 time.duration;obs.exposure
expTime Multiframe VHSv20120926 Integration time per exposure (corrected to ndit = 1) {image primary HDU keyword: EXPTIME} real 4 seconds -0.9999995e9 time.duration;obs.exposure
expTime Multiframe VHSv20130417 Integration time per exposure (corrected to ndit = 1) {image primary HDU keyword: EXPTIME} real 4 seconds -0.9999995e9 time.duration;obs.exposure
expTime Multiframe VHSv20140409 Integration time per exposure (corrected to ndit = 1) {image primary HDU keyword: EXPTIME} real 4 seconds -0.9999995e9 time.duration;obs.exposure
expTime Multiframe VHSv20150108 Integration time per exposure (corrected to ndit = 1) {image primary HDU keyword: EXPTIME} real 4 seconds -0.9999995e9 time.duration;obs.exposure
expTime Multiframe VHSv20160114 Integration time per exposure (corrected to ndit = 1) {image primary HDU keyword: EXPTIME} real 4 seconds -0.9999995e9 time.duration;obs.exposure
expTime Multiframe VHSv20160507 Integration time per exposure (corrected to ndit = 1) {image primary HDU keyword: EXPTIME} real 4 seconds -0.9999995e9 time.duration;obs.exposure
expTime Multiframe VHSv20170630 Integration time per exposure (corrected to ndit = 1) {image primary HDU keyword: EXPTIME} real 4 seconds -0.9999995e9 time.duration;obs.exposure
expTime Multiframe VHSv20171207 Integration time per exposure (corrected to ndit = 1) {image primary HDU keyword: EXPTIME} real 4 seconds -0.9999995e9 time.duration;obs.exposure
expTime Multiframe VHSv20180419 Integration time per exposure (corrected to ndit = 1) {image primary HDU keyword: EXPTIME} real 4 seconds -0.9999995e9 time.duration;obs.exposure
expTime Multiframe VIDEODR2 Integration time per exposure (corrected to ndit = 1) {image primary HDU keyword: EXPTIME} real 4 seconds -0.9999995e9 time.duration;obs.exposure
expTime Multiframe VIDEODR3 Integration time per exposure (corrected to ndit = 1) {image primary HDU keyword: EXPTIME} real 4 seconds -0.9999995e9 time.duration;obs.exposure
expTime Multiframe VIDEODR4 Integration time per exposure (corrected to ndit = 1) {image primary HDU keyword: EXPTIME} real 4 seconds -0.9999995e9 time.duration;obs.exposure
expTime Multiframe VIDEODR5 Integration time per exposure (corrected to ndit = 1) {image primary HDU keyword: EXPTIME} real 4 seconds -0.9999995e9 time.duration;obs.exposure
expTime Multiframe VIDEOv20100513 Integration time per exposure (corrected to ndit = 1) {image primary HDU keyword: EXPTIME} real 4 seconds -0.9999995e9 time.duration;obs.exposure
expTime Multiframe VIDEOv20111208 Integration time per exposure (corrected to ndit = 1) {image primary HDU keyword: EXPTIME} real 4 seconds -0.9999995e9 time.duration;obs.exposure
expTime Multiframe VIKINGDR2 Integration time per exposure (corrected to ndit = 1) {image primary HDU keyword: EXPTIME} real 4 seconds -0.9999995e9 time.duration;obs.exposure
expTime Multiframe VIKINGDR3 Integration time per exposure (corrected to ndit = 1) {image primary HDU keyword: EXPTIME} real 4 seconds -0.9999995e9 time.duration;obs.exposure
expTime Multiframe VIKINGDR4 Integration time per exposure (corrected to ndit = 1) {image primary HDU keyword: EXPTIME} real 4 seconds -0.9999995e9 time.duration;obs.exposure
expTime Multiframe VIKINGv20110714 Integration time per exposure (corrected to ndit = 1) {image primary HDU keyword: EXPTIME} real 4 seconds -0.9999995e9 time.duration;obs.exposure
expTime Multiframe VIKINGv20111019 Integration time per exposure (corrected to ndit = 1) {image primary HDU keyword: EXPTIME} real 4 seconds -0.9999995e9 time.duration;obs.exposure
expTime Multiframe VIKINGv20130417 Integration time per exposure (corrected to ndit = 1) {image primary HDU keyword: EXPTIME} real 4 seconds -0.9999995e9 time.duration;obs.exposure
expTime Multiframe VIKINGv20140402 Integration time per exposure (corrected to ndit = 1) {image primary HDU keyword: EXPTIME} real 4 seconds -0.9999995e9 time.duration;obs.exposure
expTime Multiframe VIKINGv20150421 Integration time per exposure (corrected to ndit = 1) {image primary HDU keyword: EXPTIME} real 4 seconds -0.9999995e9 time.duration;obs.exposure
expTime Multiframe VIKINGv20151230 Integration time per exposure (corrected to ndit = 1) {image primary HDU keyword: EXPTIME} real 4 seconds -0.9999995e9 time.duration;obs.exposure
expTime Multiframe VIKINGv20160406 Integration time per exposure (corrected to ndit = 1) {image primary HDU keyword: EXPTIME} real 4 seconds -0.9999995e9 time.duration;obs.exposure
expTime Multiframe VIKINGv20161202 Integration time per exposure (corrected to ndit = 1) {image primary HDU keyword: EXPTIME} real 4 seconds -0.9999995e9 time.duration;obs.exposure
expTime Multiframe VIKINGv20170715 Integration time per exposure (corrected to ndit = 1) {image primary HDU keyword: EXPTIME} real 4 seconds -0.9999995e9 time.duration;obs.exposure
expTime Multiframe VIKINGv20181012 Integration time per exposure (corrected to ndit = 1) {image primary HDU keyword: EXPTIME} real 4 seconds -0.9999995e9 time.duration;obs.exposure
expTime Multiframe VMCDR1 Integration time per exposure (corrected to ndit = 1) {image primary HDU keyword: EXPTIME} real 4 seconds -0.9999995e9 time.duration;obs.exposure
expTime Multiframe VMCDR2 Integration time per exposure (corrected to ndit = 1) {image primary HDU keyword: EXPTIME} real 4 seconds -0.9999995e9 time.duration;obs.exposure
expTime Multiframe VMCDR3 Integration time per exposure (corrected to ndit = 1) {image primary HDU keyword: EXPTIME} real 4 seconds -0.9999995e9 time.duration;obs.exposure
expTime Multiframe VMCDR4 Integration time per exposure (corrected to ndit = 1) {image primary HDU keyword: EXPTIME} real 4 seconds -0.9999995e9 time.duration;obs.exposure
expTime Multiframe VMCv20110816 Integration time per exposure (corrected to ndit = 1) {image primary HDU keyword: EXPTIME} real 4 seconds -0.9999995e9 time.duration;obs.exposure
expTime Multiframe VMCv20110909 Integration time per exposure (corrected to ndit = 1) {image primary HDU keyword: EXPTIME} real 4 seconds -0.9999995e9 time.duration;obs.exposure
expTime Multiframe VMCv20120126 Integration time per exposure (corrected to ndit = 1) {image primary HDU keyword: EXPTIME} real 4 seconds -0.9999995e9 time.duration;obs.exposure
expTime Multiframe VMCv20121128 Integration time per exposure (corrected to ndit = 1) {image primary HDU keyword: EXPTIME} real 4 seconds -0.9999995e9 time.duration;obs.exposure
expTime Multiframe VMCv20130304 Integration time per exposure (corrected to ndit = 1) {image primary HDU keyword: EXPTIME} real 4 seconds -0.9999995e9 time.duration;obs.exposure
expTime Multiframe VMCv20130805 Integration time per exposure (corrected to ndit = 1) {image primary HDU keyword: EXPTIME} real 4 seconds -0.9999995e9 time.duration;obs.exposure
expTime Multiframe VMCv20140428 Integration time per exposure (corrected to ndit = 1) {image primary HDU keyword: EXPTIME} real 4 seconds -0.9999995e9 time.duration;obs.exposure
expTime Multiframe VMCv20140903 Integration time per exposure (corrected to ndit = 1) {image primary HDU keyword: EXPTIME} real 4 seconds -0.9999995e9 time.duration;obs.exposure
expTime Multiframe VMCv20150309 Integration time per exposure (corrected to ndit = 1) {image primary HDU keyword: EXPTIME} real 4 seconds -0.9999995e9 time.duration;obs.exposure
expTime Multiframe VMCv20151218 Integration time per exposure (corrected to ndit = 1) {image primary HDU keyword: EXPTIME} real 4 seconds -0.9999995e9 time.duration;obs.exposure
expTime Multiframe VMCv20160311 Integration time per exposure (corrected to ndit = 1) {image primary HDU keyword: EXPTIME} real 4 seconds -0.9999995e9 time.duration;obs.exposure
expTime Multiframe VMCv20160822 Integration time per exposure (corrected to ndit = 1) {image primary HDU keyword: EXPTIME} real 4 seconds -0.9999995e9 time.duration;obs.exposure
expTime Multiframe VMCv20170109 Integration time per exposure (corrected to ndit = 1) {image primary HDU keyword: EXPTIME} real 4 seconds -0.9999995e9 time.duration;obs.exposure
expTime Multiframe VMCv20170411 Integration time per exposure (corrected to ndit = 1) {image primary HDU keyword: EXPTIME} real 4 seconds -0.9999995e9 time.duration;obs.exposure
expTime Multiframe VMCv20171101 Integration time per exposure (corrected to ndit = 1) {image primary HDU keyword: EXPTIME} real 4 seconds -0.9999995e9 time.duration;obs.exposure
expTime Multiframe VMCv20180702 Integration time per exposure (corrected to ndit = 1) {image primary HDU keyword: EXPTIME} real 4 seconds -0.9999995e9 time.duration;obs.exposure
expTime Multiframe VMCv20181120 Integration time per exposure (corrected to ndit = 1) {image primary HDU keyword: EXPTIME} real 4 seconds -0.9999995e9 time.duration;obs.exposure
expTime Multiframe VVVDR4 Integration time per exposure (corrected to ndit = 1) {image primary HDU keyword: EXPTIME} real 4 seconds -0.9999995e9 time.duration;obs.exposure
expTime rosat_bsc ROSAT exposure time smallint 2 sec   time.duration;obs.exposure
expTime rosat_fsc ROSAT exposure time int 4 sec   time.duration;obs.exposure
expTime ultravistaMultiframe, vhsMultiframe, videoMultiframe, vikingMultiframe, vmcMultiframe, vvvMultiframe VSAQC Integration time per exposure (corrected to ndit = 1) real 4 seconds -0.9999995e9 time.duration;obs.exposure
ext rosat_bsc, rosat_fsc ROSAT source extent smallint 2 arcsec   phys.angSize
ext_cat_solution_type gaia_hip_tycho2_match GAIADR1 Type of solution in the Hipparcos/Tycho2 catalogue varchar 1     meta.code
ext_flg allwise_sc2 WISE Extended source flag. This is an integer flag, the value of which indicates whether or not the morphology of a source is consistent with the WISE point spread function in any band, or whether the source is associated with or superimposed on a previously known extended object from the 2MASS Extended Source Catalog (XSC). CAUTION: WISE profile-fit (w?mpro) and standard aperture (w?mag) measurements are optimized for point sources and will systematically underestimate the true flux of resolved objects. If a source entry has ext_flg>0, you may wish to examine the large aperture photometry, or the elliptical aperture photometry which are measured using areas that are scaled from 2MASS XSC morphologies. int 4      
The values of the ext_flg indicate the following conditions:
  • 0 - The source shape is consistent with a point-source and the source is not associated with or superimposed on a 2MASS XSC source
  • 1 - The profile-fit photometry goodness-of-fit, w?rchi2, is >3.0 in one or more bands.
  • 2 - The source falls within the extrapolated isophotal footprint of a 2MASS XSC source.
  • 3 - The profile-fit photometry goodness-of-fit,w?rchi2, is >3.0 in one or more bands, and the source falls within the extrapolated isophotal footprint of a 2MASS XSC source.
  • 4 - The source position falls within 5" of a 2MASS XSC source.
  • 5 - The profile-fit photometry goodness-of-fit,w?rchi2, is >3.0 in one or more bands, and the source position falls within 5" of a 2MASS XSC source.
ext_flg_ALLWISE ravedr5Source RAVE probability source morphology is not consistent with single PSF int 4     meta.code
ext_key twomass_psc TWOMASS Unique identification number of the record in the XSC that corresponds to this point source. int 4     meta.id
ext_key twomass_xsc TWOMASS entry counter (key) number (unique within table). int 4     meta.id
externalID vmcCepheidVariables VMCDR4 EROS-2/OGLE III ID: Identification from the EROS-2 or OGLE III catalogues. {catalogue TType keyword: EXT_ID} varchar 32   'NONE' meta.id
externalID vmcCepheidVariables VMCv20160311 EROS-2/OGLE III ID: Identification from the EROS-2 or OGLE III catalogues. {catalogue TType keyword: EXT_ID} varchar 32   'NONE' meta.id
externalID vmcCepheidVariables VMCv20160822 EROS-2/OGLE III ID: Identification from the EROS-2 or OGLE III catalogues. {catalogue TType keyword: EXT_ID} varchar 32   'NONE' meta.id
externalID vmcCepheidVariables VMCv20170109 EROS-2/OGLE III ID: Identification from the EROS-2 or OGLE III catalogues. {catalogue TType keyword: EXT_ID} varchar 32   'NONE' meta.id
externalID vmcCepheidVariables VMCv20170411 EROS-2/OGLE III ID: Identification from the EROS-2 or OGLE III catalogues. {catalogue TType keyword: EXT_ID} varchar 32   'NONE' meta.id
externalID vmcCepheidVariables VMCv20171101 EROS-2/OGLE III ID: Identification from the EROS-2 or OGLE III catalogues. {catalogue TType keyword: EXT_ID} varchar 32   'NONE' meta.id
externalID vmcCepheidVariables VMCv20180702 EROS-2/OGLE III ID: Identification from the EROS-2 or OGLE III catalogues. {catalogue TType keyword: EXT_ID} varchar 32   'NONE' meta.id
externalID vmcCepheidVariables VMCv20181120 EROS-2/OGLE III ID: Identification from the EROS-2 or OGLE III catalogues. {catalogue TType keyword: EXT_ID} varchar 32   'NONE' meta.id
externalID vmcEclipsingBinaryVariables VMCv20140903 EROS-2/OGLE III ID: Identification from the EROS-2 or OGLE III catalogues. {catalogue TType keyword: EXT_ID} varchar 32     meta.id
externalID vmcEclipsingBinaryVariables VMCv20150309 EROS-2/OGLE III ID: Identification from the EROS-2 or OGLE III catalogues. {catalogue TType keyword: EXT_ID} varchar 32     meta.id
externalID vmcEclipsingBinaryVariables VMCv20151218 EROS-2/OGLE III ID: Identification from the EROS-2 or OGLE III catalogues. {catalogue TType keyword: EXT_ID} varchar 32     meta.id
externalID vmcEclipsingBinaryVariables VMCv20160311 EROS-2/OGLE III ID: Identification from the EROS-2 or OGLE III catalogues. {catalogue TType keyword: EXT_ID} varchar 32     meta.id
externalID vmcEclipsingBinaryVariables VMCv20160822 EROS-2/OGLE III ID: Identification from the EROS-2 or OGLE III catalogues. {catalogue TType keyword: EXT_ID} varchar 32     meta.id
externalID vmcEclipsingBinaryVariables VMCv20170109 EROS-2/OGLE III ID: Identification from the EROS-2 or OGLE III catalogues. {catalogue TType keyword: EXT_ID} varchar 32     meta.id
externalID vmcEclipsingBinaryVariables VMCv20170411 EROS-2/OGLE III ID: Identification from the EROS-2 or OGLE III catalogues. {catalogue TType keyword: EXT_ID} varchar 32     meta.id
externalID vmcEclipsingBinaryVariables VMCv20171101 EROS-2/OGLE III ID: Identification from the EROS-2 or OGLE III catalogues. {catalogue TType keyword: EXT_ID} varchar 32     meta.id
externalID vmcEclipsingBinaryVariables VMCv20180702 EROS-2/OGLE III ID: Identification from the EROS-2 or OGLE III catalogues. {catalogue TType keyword: EXT_ID} varchar 32     meta.id
externalID vmcEclipsingBinaryVariables VMCv20181120 EROS-2/OGLE III ID: Identification from the EROS-2 or OGLE III catalogues. {catalogue TType keyword: EXT_ID} varchar 32     meta.id
externalID vmcEclipsingBinaryVariables, vmcRRlyraeVariables VMCDR4 EROS-2/OGLE III ID: Identification from the EROS-2 or OGLE III catalogues. {catalogue TType keyword: EXT_ID} varchar 32     meta.id
extID vvvBulge3DExtinctVals EXTINCT UID of the 3D spatial position bigint 8     meta.id;meta.main
extinctionCat MultiframeDetector VHSDR1 Extinction coefficient for the catalogue data {catalogue extension keyword:  EXTINCT} real 4 mags -0.9999995e9 ??
These are currently set to a constant clear night level, which within the current measuring error is the same for all passbands. Note that the frame-by-frame derived ZP from 2MASS automatically corrects for extinction variations, assuming they are uniform across the field of view.
extinctionCat MultiframeDetector VHSDR2 Extinction coefficient for the catalogue data {catalogue extension keyword:  EXTINCT} real 4 mags -0.9999995e9 ??
These are currently set to a constant clear night level, which within the current measuring error is the same for all passbands. Note that the frame-by-frame derived ZP from 2MASS automatically corrects for extinction variations, assuming they are uniform across the field of view.
extinctionCat MultiframeDetector VHSDR3 Extinction coefficient for the catalogue data {catalogue extension keyword:  EXTINCT} real 4 mags -0.9999995e9 ??
These are currently set to a constant clear night level, which within the current measuring error is the same for all passbands. Note that the frame-by-frame derived ZP from 2MASS automatically corrects for extinction variations, assuming they are uniform across the field of view.
extinctionCat MultiframeDetector VHSDR4 Extinction coefficient for the catalogue data {catalogue extension keyword:  EXTINCT} real 4 mags -0.9999995e9 ??
These are currently set to a constant clear night level, which within the current measuring error is the same for all passbands. Note that the frame-by-frame derived ZP from 2MASS automatically corrects for extinction variations, assuming they are uniform across the field of view.
extinctionCat MultiframeDetector VHSv20120926 Extinction coefficient for the catalogue data {catalogue extension keyword:  EXTINCT} real 4 mags -0.9999995e9 ??
These are currently set to a constant clear night level, which within the current measuring error is the same for all passbands. Note that the frame-by-frame derived ZP from 2MASS automatically corrects for extinction variations, assuming they are uniform across the field of view.
extinctionCat MultiframeDetector VHSv20130417 Extinction coefficient for the catalogue data {catalogue extension keyword:  EXTINCT} real 4 mags -0.9999995e9 ??
These are currently set to a constant clear night level, which within the current measuring error is the same for all passbands. Note that the frame-by-frame derived ZP from 2MASS automatically corrects for extinction variations, assuming they are uniform across the field of view.
extinctionCat MultiframeDetector VHSv20140409 Extinction coefficient for the catalogue data {catalogue extension keyword:  EXTINCT} real 4 mags -0.9999995e9 ??
These are currently set to a constant clear night level, which within the current measuring error is the same for all passbands. Note that the frame-by-frame derived ZP from 2MASS automatically corrects for extinction variations, assuming they are uniform across the field of view.
extinctionCat MultiframeDetector VHSv20150108 Extinction coefficient for the catalogue data {catalogue extension keyword:  EXTINCT} real 4 mags -0.9999995e9 ??
These are currently set to a constant clear night level, which within the current measuring error is the same for all passbands. Note that the frame-by-frame derived ZP from 2MASS automatically corrects for extinction variations, assuming they are uniform across the field of view.
extinctionCat MultiframeDetector VHSv20160114 Extinction coefficient for the catalogue data {catalogue extension keyword:  EXTINCT} real 4 mags -0.9999995e9 ??
These are currently set to a constant clear night level, which within the current measuring error is the same for all passbands. Note that the frame-by-frame derived ZP from 2MASS automatically corrects for extinction variations, assuming they are uniform across the field of view.
extinctionCat MultiframeDetector VHSv20160507 Extinction coefficient for the catalogue data {catalogue extension keyword:  EXTINCT} real 4 mags -0.9999995e9 ??
These are currently set to a constant clear night level, which within the current measuring error is the same for all passbands. Note that the frame-by-frame derived ZP from 2MASS automatically corrects for extinction variations, assuming they are uniform across the field of view.
extinctionCat MultiframeDetector VHSv20170630 Extinction coefficient for the catalogue data {catalogue extension keyword:  EXTINCT} real 4 mags -0.9999995e9 ??
These are currently set to a constant clear night level, which within the current measuring error is the same for all passbands. Note that the frame-by-frame derived ZP from 2MASS automatically corrects for extinction variations, assuming they are uniform across the field of view.
extinctionCat MultiframeDetector VHSv20171207 Extinction coefficient for the catalogue data {catalogue extension keyword:  EXTINCT} real 4 mags -0.9999995e9 ??
These are currently set to a constant clear night level, which within the current measuring error is the same for all passbands. Note that the frame-by-frame derived ZP from 2MASS automatically corrects for extinction variations, assuming they are uniform across the field of view.
extinctionCat MultiframeDetector VHSv20180419 Extinction coefficient for the catalogue data {catalogue extension keyword:  EXTINCT} real 4 mags -0.9999995e9 ??
These are currently set to a constant clear night level, which within the current measuring error is the same for all passbands. Note that the frame-by-frame derived ZP from 2MASS automatically corrects for extinction variations, assuming they are uniform across the field of view.
extinctionCat MultiframeDetector VIDEODR2 Extinction coefficient for the catalogue data {catalogue extension keyword:  EXTINCT} real 4 mags -0.9999995e9 ??
These are currently set to a constant clear night level, which within the current measuring error is the same for all passbands. Note that the frame-by-frame derived ZP from 2MASS automatically corrects for extinction variations, assuming they are uniform across the field of view.
extinctionCat MultiframeDetector VIDEODR3 Extinction coefficient for the catalogue data {catalogue extension keyword:  EXTINCT} real 4 mags -0.9999995e9 ??
These are currently set to a constant clear night level, which within the current measuring error is the same for all passbands. Note that the frame-by-frame derived ZP from 2MASS automatically corrects for extinction variations, assuming they are uniform across the field of view.
extinctionCat MultiframeDetector VIDEODR4 Extinction coefficient for the catalogue data {catalogue extension keyword:  EXTINCT} real 4 mags -0.9999995e9 ??
These are currently set to a constant clear night level, which within the current measuring error is the same for all passbands. Note that the frame-by-frame derived ZP from 2MASS automatically corrects for extinction variations, assuming they are uniform across the field of view.
extinctionCat MultiframeDetector VIDEODR5 Extinction coefficient for the catalogue data {catalogue extension keyword:  EXTINCT} real 4 mags -0.9999995e9 ??
These are currently set to a constant clear night level, which within the current measuring error is the same for all passbands. Note that the frame-by-frame derived ZP from 2MASS automatically corrects for extinction variations, assuming they are uniform across the field of view.
extinctionCat MultiframeDetector VIDEOv20100513 Extinction coefficient for the catalogue data {catalogue extension keyword:  EXTINCT} real 4 mags -0.9999995e9 ??
These are currently set to a constant clear night level, which within the current measuring error is the same for all passbands. Note that the frame-by-frame derived ZP from 2MASS automatically corrects for extinction variations, assuming they are uniform across the field of view.
extinctionCat MultiframeDetector VIDEOv20111208 Extinction coefficient for the catalogue data {catalogue extension keyword:  EXTINCT} real 4 mags -0.9999995e9 ??
These are currently set to a constant clear night level, which within the current measuring error is the same for all passbands. Note that the frame-by-frame derived ZP from 2MASS automatically corrects for extinction variations, assuming they are uniform across the field of view.
extinctionCat MultiframeDetector VIKINGDR2 Extinction coefficient for the catalogue data {catalogue extension keyword:  EXTINCT} real 4 mags -0.9999995e9 ??
These are currently set to a constant clear night level, which within the current measuring error is the same for all passbands. Note that the frame-by-frame derived ZP from 2MASS automatically corrects for extinction variations, assuming they are uniform across the field of view.
extinctionCat MultiframeDetector VIKINGDR3 Extinction coefficient for the catalogue data {catalogue extension keyword:  EXTINCT} real 4 mags -0.9999995e9 ??
These are currently set to a constant clear night level, which within the current measuring error is the same for all passbands. Note that the frame-by-frame derived ZP from 2MASS automatically corrects for extinction variations, assuming they are uniform across the field of view.
extinctionCat MultiframeDetector VIKINGDR4 Extinction coefficient for the catalogue data {catalogue extension keyword:  EXTINCT} real 4 mags -0.9999995e9 ??
These are currently set to a constant clear night level, which within the current measuring error is the same for all passbands. Note that the frame-by-frame derived ZP from 2MASS automatically corrects for extinction variations, assuming they are uniform across the field of view.
extinctionCat MultiframeDetector VIKINGv20110714 Extinction coefficient for the catalogue data {catalogue extension keyword:  EXTINCT} real 4 mags -0.9999995e9 ??
These are currently set to a constant clear night level, which within the current measuring error is the same for all passbands. Note that the frame-by-frame derived ZP from 2MASS automatically corrects for extinction variations, assuming they are uniform across the field of view.
extinctionCat MultiframeDetector VIKINGv20111019 Extinction coefficient for the catalogue data {catalogue extension keyword:  EXTINCT} real 4 mags -0.9999995e9 ??
These are currently set to a constant clear night level, which within the current measuring error is the same for all passbands. Note that the frame-by-frame derived ZP from 2MASS automatically corrects for extinction variations, assuming they are uniform across the field of view.
extinctionCat MultiframeDetector VIKINGv20130417 Extinction coefficient for the catalogue data {catalogue extension keyword:  EXTINCT} real 4 mags -0.9999995e9 ??
These are currently set to a constant clear night level, which within the current measuring error is the same for all passbands. Note that the frame-by-frame derived ZP from 2MASS automatically corrects for extinction variations, assuming they are uniform across the field of view.
extinctionCat MultiframeDetector VIKINGv20140402 Extinction coefficient for the catalogue data {catalogue extension keyword:  EXTINCT} real 4 mags -0.9999995e9 ??
These are currently set to a constant clear night level, which within the current measuring error is the same for all passbands. Note that the frame-by-frame derived ZP from 2MASS automatically corrects for extinction variations, assuming they are uniform across the field of view.
extinctionCat MultiframeDetector VIKINGv20150421 Extinction coefficient for the catalogue data {catalogue extension keyword:  EXTINCT} real 4 mags -0.9999995e9 ??
These are currently set to a constant clear night level, which within the current measuring error is the same for all passbands. Note that the frame-by-frame derived ZP from 2MASS automatically corrects for extinction variations, assuming they are uniform across the field of view.
extinctionCat MultiframeDetector VIKINGv20151230 Extinction coefficient for the catalogue data {catalogue extension keyword:  EXTINCT} real 4 mags -0.9999995e9 ??
These are currently set to a constant clear night level, which within the current measuring error is the same for all passbands. Note that the frame-by-frame derived ZP from 2MASS automatically corrects for extinction variations, assuming they are uniform across the field of view.
extinctionCat MultiframeDetector VIKINGv20160406 Extinction coefficient for the catalogue data {catalogue extension keyword:  EXTINCT} real 4 mags -0.9999995e9 ??
These are currently set to a constant clear night level, which within the current measuring error is the same for all passbands. Note that the frame-by-frame derived ZP from 2MASS automatically corrects for extinction variations, assuming they are uniform across the field of view.
extinctionCat MultiframeDetector VIKINGv20161202 Extinction coefficient for the catalogue data {catalogue extension keyword:  EXTINCT} real 4 mags -0.9999995e9 ??
These are currently set to a constant clear night level, which within the current measuring error is the same for all passbands. Note that the frame-by-frame derived ZP from 2MASS automatically corrects for extinction variations, assuming they are uniform across the field of view.
extinctionCat MultiframeDetector VIKINGv20170715 Extinction coefficient for the catalogue data {catalogue extension keyword:  EXTINCT} real 4 mags -0.9999995e9 ??
These are currently set to a constant clear night level, which within the current measuring error is the same for all passbands. Note that the frame-by-frame derived ZP from 2MASS automatically corrects for extinction variations, assuming they are uniform across the field of view.
extinctionCat MultiframeDetector VIKINGv20181012 Extinction coefficient for the catalogue data {catalogue extension keyword:  EXTINCT} real 4 mags -0.9999995e9 ??
These are currently set to a constant clear night level, which within the current measuring error is the same for all passbands. Note that the frame-by-frame derived ZP from 2MASS automatically corrects for extinction variations, assuming they are uniform across the field of view.
extinctionCat MultiframeDetector VMCDR1 Extinction coefficient for the catalogue data {catalogue extension keyword:  EXTINCT} real 4 mags -0.9999995e9 ??
These are currently set to a constant clear night level, which within the current measuring error is the same for all passbands. Note that the frame-by-frame derived ZP from 2MASS automatically corrects for extinction variations, assuming they are uniform across the field of view.
extinctionCat MultiframeDetector VMCDR2 Extinction coefficient for the catalogue data {catalogue extension keyword:  EXTINCT} real 4 mags -0.9999995e9 ??
These are currently set to a constant clear night level, which within the current measuring error is the same for all passbands. Note that the frame-by-frame derived ZP from 2MASS automatically corrects for extinction variations, assuming they are uniform across the field of view.
extinctionCat MultiframeDetector VMCDR3 Extinction coefficient for the catalogue data {catalogue extension keyword:  EXTINCT} real 4 mags -0.9999995e9 ??
These are currently set to a constant clear night level, which within the current measuring error is the same for all passbands. Note that the frame-by-frame derived ZP from 2MASS automatically corrects for extinction variations, assuming they are uniform across the field of view.
extinctionCat MultiframeDetector VMCDR4 Extinction coefficient for the catalogue data {catalogue extension keyword:  EXTINCT} real 4 mags -0.9999995e9 ??
These are currently set to a constant clear night level, which within the current measuring error is the same for all passbands. Note that the frame-by-frame derived ZP from 2MASS automatically corrects for extinction variations, assuming they are uniform across the field of view.
extinctionCat MultiframeDetector VMCv20110816 Extinction coefficient for the catalogue data {catalogue extension keyword:  EXTINCT} real 4 mags -0.9999995e9 ??
These are currently set to a constant clear night level, which within the current measuring error is the same for all passbands. Note that the frame-by-frame derived ZP from 2MASS automatically corrects for extinction variations, assuming they are uniform across the field of view.
extinctionCat MultiframeDetector VMCv20110909 Extinction coefficient for the catalogue data {catalogue extension keyword:  EXTINCT} real 4 mags -0.9999995e9 ??
These are currently set to a constant clear night level, which within the current measuring error is the same for all passbands. Note that the frame-by-frame derived ZP from 2MASS automatically corrects for extinction variations, assuming they are uniform across the field of view.
extinctionCat MultiframeDetector VMCv20120126 Extinction coefficient for the catalogue data {catalogue extension keyword:  EXTINCT} real 4 mags -0.9999995e9 ??
These are currently set to a constant clear night level, which within the current measuring error is the same for all passbands. Note that the frame-by-frame derived ZP from 2MASS automatically corrects for extinction variations, assuming they are uniform across the field of view.
extinctionCat MultiframeDetector VMCv20121128 Extinction coefficient for the catalogue data {catalogue extension keyword:  EXTINCT} real 4 mags -0.9999995e9 ??
These are currently set to a constant clear night level, which within the current measuring error is the same for all passbands. Note that the frame-by-frame derived ZP from 2MASS automatically corrects for extinction variations, assuming they are uniform across the field of view.
extinctionCat MultiframeDetector VMCv20130304 Extinction coefficient for the catalogue data {catalogue extension keyword:  EXTINCT} real 4 mags -0.9999995e9 ??
These are currently set to a constant clear night level, which within the current measuring error is the same for all passbands. Note that the frame-by-frame derived ZP from 2MASS automatically corrects for extinction variations, assuming they are uniform across the field of view.
extinctionCat MultiframeDetector VMCv20130805 Extinction coefficient for the catalogue data {catalogue extension keyword:  EXTINCT} real 4 mags -0.9999995e9 ??
These are currently set to a constant clear night level, which within the current measuring error is the same for all passbands. Note that the frame-by-frame derived ZP from 2MASS automatically corrects for extinction variations, assuming they are uniform across the field of view.
extinctionCat MultiframeDetector VMCv20140428 Extinction coefficient for the catalogue data {catalogue extension keyword:  EXTINCT} real 4 mags -0.9999995e9 ??
These are currently set to a constant clear night level, which within the current measuring error is the same for all passbands. Note that the frame-by-frame derived ZP from 2MASS automatically corrects for extinction variations, assuming they are uniform across the field of view.
extinctionCat MultiframeDetector VMCv20140903 Extinction coefficient for the catalogue data {catalogue extension keyword:  EXTINCT} real 4 mags -0.9999995e9 ??
These are currently set to a constant clear night level, which within the current measuring error is the same for all passbands. Note that the frame-by-frame derived ZP from 2MASS automatically corrects for extinction variations, assuming they are uniform across the field of view.
extinctionCat MultiframeDetector VMCv20150309 Extinction coefficient for the catalogue data {catalogue extension keyword:  EXTINCT} real 4 mags -0.9999995e9 ??
These are currently set to a constant clear night level, which within the current measuring error is the same for all passbands. Note that the frame-by-frame derived ZP from 2MASS automatically corrects for extinction variations, assuming they are uniform across the field of view.
extinctionCat MultiframeDetector VMCv20151218 Extinction coefficient for the catalogue data {catalogue extension keyword:  EXTINCT} real 4 mags -0.9999995e9 ??
These are currently set to a constant clear night level, which within the current measuring error is the same for all passbands. Note that the frame-by-frame derived ZP from 2MASS automatically corrects for extinction variations, assuming they are uniform across the field of view.
extinctionCat MultiframeDetector VMCv20160311 Extinction coefficient for the catalogue data {catalogue extension keyword:  EXTINCT} real 4 mags -0.9999995e9 ??
These are currently set to a constant clear night level, which within the current measuring error is the same for all passbands. Note that the frame-by-frame derived ZP from 2MASS automatically corrects for extinction variations, assuming they are uniform across the field of view.
extinctionCat MultiframeDetector VMCv20160822 Extinction coefficient for the catalogue data {catalogue extension keyword:  EXTINCT} real 4 mags -0.9999995e9 ??
These are currently set to a constant clear night level, which within the current measuring error is the same for all passbands. Note that the frame-by-frame derived ZP from 2MASS automatically corrects for extinction variations, assuming they are uniform across the field of view.
extinctionCat MultiframeDetector VMCv20170109 Extinction coefficient for the catalogue data {catalogue extension keyword:  EXTINCT} real 4 mags -0.9999995e9 ??
These are currently set to a constant clear night level, which within the current measuring error is the same for all passbands. Note that the frame-by-frame derived ZP from 2MASS automatically corrects for extinction variations, assuming they are uniform across the field of view.
extinctionCat MultiframeDetector VMCv20170411 Extinction coefficient for the catalogue data {catalogue extension keyword:  EXTINCT} real 4 mags -0.9999995e9 ??
These are currently set to a constant clear night level, which within the current measuring error is the same for all passbands. Note that the frame-by-frame derived ZP from 2MASS automatically corrects for extinction variations, assuming they are uniform across the field of view.
extinctionCat MultiframeDetector VMCv20171101 Extinction coefficient for the catalogue data {catalogue extension keyword:  EXTINCT} real 4 mags -0.9999995e9 ??
These are currently set to a constant clear night level, which within the current measuring error is the same for all passbands. Note that the frame-by-frame derived ZP from 2MASS automatically corrects for extinction variations, assuming they are uniform across the field of view.
extinctionCat MultiframeDetector VMCv20180702 Extinction coefficient for the catalogue data {catalogue extension keyword:  EXTINCT} real 4 mags -0.9999995e9 ??
These are currently set to a constant clear night level, which within the current measuring error is the same for all passbands. Note that the frame-by-frame derived ZP from 2MASS automatically corrects for extinction variations, assuming they are uniform across the field of view.
extinctionCat MultiframeDetector VMCv20181120 Extinction coefficient for the catalogue data {catalogue extension keyword:  EXTINCT} real 4 mags -0.9999995e9 ??
These are currently set to a constant clear night level, which within the current measuring error is the same for all passbands. Note that the frame-by-frame derived ZP from 2MASS automatically corrects for extinction variations, assuming they are uniform across the field of view.
extinctionCat MultiframeDetector VVVDR4 Extinction coefficient for the catalogue data {catalogue extension keyword:  EXTINCT} real 4 mags -0.9999995e9 ??
These are currently set to a constant clear night level, which within the current measuring error is the same for all passbands. Note that the frame-by-frame derived ZP from 2MASS automatically corrects for extinction variations, assuming they are uniform across the field of view.
extinctionCat ultravistaMultiframeDetector, vhsMultiframeDetector, videoMultiframeDetector, vikingMultiframeDetector, vmcMultiframeDetector, vvvMultiframeDetector VSAQC Extinction coefficient for the catalogue data real 4 mags -0.9999995e9 ??
extinctionExt MultiframeDetector VHSDR1 Extinction coefficient of the detector {image extension keyword: EXTINCT} real 4 mags -0.9999995e9 ??
These are currently set to a constant clear night level, which within the current measuring error is the same for all passbands. Note that the frame-by-frame derived ZP from 2MASS automatically corrects for extinction variations, assuming they are uniform across the field of view.
extinctionExt MultiframeDetector VHSDR2 Extinction coefficient of the detector {image extension keyword: EXTINCT} real 4 mags -0.9999995e9 ??
These are currently set to a constant clear night level, which within the current measuring error is the same for all passbands. Note that the frame-by-frame derived ZP from 2MASS automatically corrects for extinction variations, assuming they are uniform across the field of view.
extinctionExt MultiframeDetector VHSDR3 Extinction coefficient of the detector {image extension keyword: EXTINCT} real 4 mags -0.9999995e9 ??
These are currently set to a constant clear night level, which within the current measuring error is the same for all passbands. Note that the frame-by-frame derived ZP from 2MASS automatically corrects for extinction variations, assuming they are uniform across the field of view.
extinctionExt MultiframeDetector VHSDR4 Extinction coefficient of the detector {image extension keyword: EXTINCT} real 4 mags -0.9999995e9 ??
These are currently set to a constant clear night level, which within the current measuring error is the same for all passbands. Note that the frame-by-frame derived ZP from 2MASS automatically corrects for extinction variations, assuming they are uniform across the field of view.
extinctionExt MultiframeDetector VHSv20120926 Extinction coefficient of the detector {image extension keyword: EXTINCT} real 4 mags -0.9999995e9 ??
These are currently set to a constant clear night level, which within the current measuring error is the same for all passbands. Note that the frame-by-frame derived ZP from 2MASS automatically corrects for extinction variations, assuming they are uniform across the field of view.
extinctionExt MultiframeDetector VHSv20130417 Extinction coefficient of the detector {image extension keyword: EXTINCT} real 4 mags -0.9999995e9 ??
These are currently set to a constant clear night level, which within the current measuring error is the same for all passbands. Note that the frame-by-frame derived ZP from 2MASS automatically corrects for extinction variations, assuming they are uniform across the field of view.
extinctionExt MultiframeDetector VHSv20140409 Extinction coefficient of the detector {image extension keyword: EXTINCT} real 4 mags -0.9999995e9 ??
These are currently set to a constant clear night level, which within the current measuring error is the same for all passbands. Note that the frame-by-frame derived ZP from 2MASS automatically corrects for extinction variations, assuming they are uniform across the field of view.
extinctionExt MultiframeDetector VHSv20150108 Extinction coefficient of the detector {image extension keyword: EXTINCT} real 4 mags -0.9999995e9 ??
These are currently set to a constant clear night level, which within the current measuring error is the same for all passbands. Note that the frame-by-frame derived ZP from 2MASS automatically corrects for extinction variations, assuming they are uniform across the field of view.
extinctionExt MultiframeDetector VHSv20160114 Extinction coefficient of the detector {image extension keyword: EXTINCT} real 4 mags -0.9999995e9 ??
These are currently set to a constant clear night level, which within the current measuring error is the same for all passbands. Note that the frame-by-frame derived ZP from 2MASS automatically corrects for extinction variations, assuming they are uniform across the field of view.
extinctionExt MultiframeDetector VHSv20160507 Extinction coefficient of the detector {image extension keyword: EXTINCT} real 4 mags -0.9999995e9 ??
These are currently set to a constant clear night level, which within the current measuring error is the same for all passbands. Note that the frame-by-frame derived ZP from 2MASS automatically corrects for extinction variations, assuming they are uniform across the field of view.
extinctionExt MultiframeDetector VHSv20170630 Extinction coefficient of the detector {image extension keyword: EXTINCT} real 4 mags -0.9999995e9 ??
These are currently set to a constant clear night level, which within the current measuring error is the same for all passbands. Note that the frame-by-frame derived ZP from 2MASS automatically corrects for extinction variations, assuming they are uniform across the field of view.
extinctionExt MultiframeDetector VHSv20171207 Extinction coefficient of the detector {image extension keyword: EXTINCT} real 4 mags -0.9999995e9 ??
These are currently set to a constant clear night level, which within the current measuring error is the same for all passbands. Note that the frame-by-frame derived ZP from 2MASS automatically corrects for extinction variations, assuming they are uniform across the field of view.
extinctionExt MultiframeDetector VHSv20180419 Extinction coefficient of the detector {image extension keyword: EXTINCT} real 4 mags -0.9999995e9 ??
These are currently set to a constant clear night level, which within the current measuring error is the same for all passbands. Note that the frame-by-frame derived ZP from 2MASS automatically corrects for extinction variations, assuming they are uniform across the field of view.
extinctionExt MultiframeDetector VIDEODR2 Extinction coefficient of the detector {image extension keyword: EXTINCT} real 4 mags -0.9999995e9 ??
These are currently set to a constant clear night level, which within the current measuring error is the same for all passbands. Note that the frame-by-frame derived ZP from 2MASS automatically corrects for extinction variations, assuming they are uniform across the field of view.
extinctionExt MultiframeDetector VIDEODR3 Extinction coefficient of the detector {image extension keyword: EXTINCT} real 4 mags -0.9999995e9 ??
These are currently set to a constant clear night level, which within the current measuring error is the same for all passbands. Note that the frame-by-frame derived ZP from 2MASS automatically corrects for extinction variations, assuming they are uniform across the field of view.
extinctionExt MultiframeDetector VIDEODR4 Extinction coefficient of the detector {image extension keyword: EXTINCT} real 4 mags -0.9999995e9 ??
These are currently set to a constant clear night level, which within the current measuring error is the same for all passbands. Note that the frame-by-frame derived ZP from 2MASS automatically corrects for extinction variations, assuming they are uniform across the field of view.
extinctionExt MultiframeDetector VIDEODR5 Extinction coefficient of the detector {image extension keyword: EXTINCT} real 4 mags -0.9999995e9 ??
These are currently set to a constant clear night level, which within the current measuring error is the same for all passbands. Note that the frame-by-frame derived ZP from 2MASS automatically corrects for extinction variations, assuming they are uniform across the field of view.
extinctionExt MultiframeDetector VIDEOv20100513 Extinction coefficient of the detector {image extension keyword: EXTINCT} real 4 mags -0.9999995e9 ??
These are currently set to a constant clear night level, which within the current measuring error is the same for all passbands. Note that the frame-by-frame derived ZP from 2MASS automatically corrects for extinction variations, assuming they are uniform across the field of view.
extinctionExt MultiframeDetector VIDEOv20111208 Extinction coefficient of the detector {image extension keyword: EXTINCT} real 4 mags -0.9999995e9 ??
These are currently set to a constant clear night level, which within the current measuring error is the same for all passbands. Note that the frame-by-frame derived ZP from 2MASS automatically corrects for extinction variations, assuming they are uniform across the field of view.
extinctionExt MultiframeDetector VIKINGDR2 Extinction coefficient of the detector {image extension keyword: EXTINCT} real 4 mags -0.9999995e9 ??
These are currently set to a constant clear night level, which within the current measuring error is the same for all passbands. Note that the frame-by-frame derived ZP from 2MASS automatically corrects for extinction variations, assuming they are uniform across the field of view.
extinctionExt MultiframeDetector VIKINGDR3 Extinction coefficient of the detector {image extension keyword: EXTINCT} real 4 mags -0.9999995e9 ??
These are currently set to a constant clear night level, which within the current measuring error is the same for all passbands. Note that the frame-by-frame derived ZP from 2MASS automatically corrects for extinction variations, assuming they are uniform across the field of view.
extinctionExt MultiframeDetector VIKINGDR4 Extinction coefficient of the detector {image extension keyword: EXTINCT} real 4 mags -0.9999995e9 ??
These are currently set to a constant clear night level, which within the current measuring error is the same for all passbands. Note that the frame-by-frame derived ZP from 2MASS automatically corrects for extinction variations, assuming they are uniform across the field of view.
extinctionExt MultiframeDetector VIKINGv20110714 Extinction coefficient of the detector {image extension keyword: EXTINCT} real 4 mags -0.9999995e9 ??
These are currently set to a constant clear night level, which within the current measuring error is the same for all passbands. Note that the frame-by-frame derived ZP from 2MASS automatically corrects for extinction variations, assuming they are uniform across the field of view.
extinctionExt MultiframeDetector VIKINGv20111019 Extinction coefficient of the detector {image extension keyword: EXTINCT} real 4 mags -0.9999995e9 ??
These are currently set to a constant clear night level, which within the current measuring error is the same for all passbands. Note that the frame-by-frame derived ZP from 2MASS automatically corrects for extinction variations, assuming they are uniform across the field of view.
extinctionExt MultiframeDetector VIKINGv20130417 Extinction coefficient of the detector {image extension keyword: EXTINCT} real 4 mags -0.9999995e9 ??
These are currently set to a constant clear night level, which within the current measuring error is the same for all passbands. Note that the frame-by-frame derived ZP from 2MASS automatically corrects for extinction variations, assuming they are uniform across the field of view.
extinctionExt MultiframeDetector VIKINGv20140402 Extinction coefficient of the detector {image extension keyword: EXTINCT} real 4 mags -0.9999995e9 ??
These are currently set to a constant clear night level, which within the current measuring error is the same for all passbands. Note that the frame-by-frame derived ZP from 2MASS automatically corrects for extinction variations, assuming they are uniform across the field of view.
extinctionExt MultiframeDetector VIKINGv20150421 Extinction coefficient of the detector {image extension keyword: EXTINCT} real 4 mags -0.9999995e9 ??
These are currently set to a constant clear night level, which within the current measuring error is the same for all passbands. Note that the frame-by-frame derived ZP from 2MASS automatically corrects for extinction variations, assuming they are uniform across the field of view.
extinctionExt MultiframeDetector VIKINGv20151230 Extinction coefficient of the detector {image extension keyword: EXTINCT} real 4 mags -0.9999995e9 ??
These are currently set to a constant clear night level, which within the current measuring error is the same for all passbands. Note that the frame-by-frame derived ZP from 2MASS automatically corrects for extinction variations, assuming they are uniform across the field of view.
extinctionExt MultiframeDetector VIKINGv20160406 Extinction coefficient of the detector {image extension keyword: EXTINCT} real 4 mags -0.9999995e9 ??
These are currently set to a constant clear night level, which within the current measuring error is the same for all passbands. Note that the frame-by-frame derived ZP from 2MASS automatically corrects for extinction variations, assuming they are uniform across the field of view.
extinctionExt MultiframeDetector VIKINGv20161202 Extinction coefficient of the detector {image extension keyword: EXTINCT} real 4 mags -0.9999995e9 ??
These are currently set to a constant clear night level, which within the current measuring error is the same for all passbands. Note that the frame-by-frame derived ZP from 2MASS automatically corrects for extinction variations, assuming they are uniform across the field of view.
extinctionExt MultiframeDetector VIKINGv20170715 Extinction coefficient of the detector {image extension keyword: EXTINCT} real 4 mags -0.9999995e9 ??
These are currently set to a constant clear night level, which within the current measuring error is the same for all passbands. Note that the frame-by-frame derived ZP from 2MASS automatically corrects for extinction variations, assuming they are uniform across the field of view.
extinctionExt MultiframeDetector VIKINGv20181012 Extinction coefficient of the detector {image extension keyword: EXTINCT} real 4 mags -0.9999995e9 ??
These are currently set to a constant clear night level, which within the current measuring error is the same for all passbands. Note that the frame-by-frame derived ZP from 2MASS automatically corrects for extinction variations, assuming they are uniform across the field of view.
extinctionExt MultiframeDetector VMCDR1 Extinction coefficient of the detector {image extension keyword: EXTINCT} real 4 mags -0.9999995e9 ??
These are currently set to a constant clear night level, which within the current measuring error is the same for all passbands. Note that the frame-by-frame derived ZP from 2MASS automatically corrects for extinction variations, assuming they are uniform across the field of view.
extinctionExt MultiframeDetector VMCDR2 Extinction coefficient of the detector {image extension keyword: EXTINCT} real 4 mags -0.9999995e9 ??
These are currently set to a constant clear night level, which within the current measuring error is the same for all passbands. Note that the frame-by-frame derived ZP from 2MASS automatically corrects for extinction variations, assuming they are uniform across the field of view.
extinctionExt MultiframeDetector VMCDR3 Extinction coefficient of the detector {image extension keyword: EXTINCT} real 4 mags -0.9999995e9 ??
These are currently set to a constant clear night level, which within the current measuring error is the same for all passbands. Note that the frame-by-frame derived ZP from 2MASS automatically corrects for extinction variations, assuming they are uniform across the field of view.
extinctionExt MultiframeDetector VMCDR4 Extinction coefficient of the detector {image extension keyword: EXTINCT} real 4 mags -0.9999995e9 ??
These are currently set to a constant clear night level, which within the current measuring error is the same for all passbands. Note that the frame-by-frame derived ZP from 2MASS automatically corrects for extinction variations, assuming they are uniform across the field of view.
extinctionExt MultiframeDetector VMCv20110816 Extinction coefficient of the detector {image extension keyword: EXTINCT} real 4 mags -0.9999995e9 ??
These are currently set to a constant clear night level, which within the current measuring error is the same for all passbands. Note that the frame-by-frame derived ZP from 2MASS automatically corrects for extinction variations, assuming they are uniform across the field of view.
extinctionExt MultiframeDetector VMCv20110909 Extinction coefficient of the detector {image extension keyword: EXTINCT} real 4 mags -0.9999995e9 ??
These are currently set to a constant clear night level, which within the current measuring error is the same for all passbands. Note that the frame-by-frame derived ZP from 2MASS automatically corrects for extinction variations, assuming they are uniform across the field of view.
extinctionExt MultiframeDetector VMCv20120126 Extinction coefficient of the detector {image extension keyword: EXTINCT} real 4 mags -0.9999995e9 ??
These are currently set to a constant clear night level, which within the current measuring error is the same for all passbands. Note that the frame-by-frame derived ZP from 2MASS automatically corrects for extinction variations, assuming they are uniform across the field of view.
extinctionExt MultiframeDetector VMCv20121128 Extinction coefficient of the detector {image extension keyword: EXTINCT} real 4 mags -0.9999995e9 ??
These are currently set to a constant clear night level, which within the current measuring error is the same for all passbands. Note that the frame-by-frame derived ZP from 2MASS automatically corrects for extinction variations, assuming they are uniform across the field of view.
extinctionExt MultiframeDetector VMCv20130304 Extinction coefficient of the detector {image extension keyword: EXTINCT} real 4 mags -0.9999995e9 ??
These are currently set to a constant clear night level, which within the current measuring error is the same for all passbands. Note that the frame-by-frame derived ZP from 2MASS automatically corrects for extinction variations, assuming they are uniform across the field of view.
extinctionExt MultiframeDetector VMCv20130805 Extinction coefficient of the detector {image extension keyword: EXTINCT} real 4 mags -0.9999995e9 ??
These are currently set to a constant clear night level, which within the current measuring error is the same for all passbands. Note that the frame-by-frame derived ZP from 2MASS automatically corrects for extinction variations, assuming they are uniform across the field of view.
extinctionExt MultiframeDetector VMCv20140428 Extinction coefficient of the detector {image extension keyword: EXTINCT} real 4 mags -0.9999995e9 ??
These are currently set to a constant clear night level, which within the current measuring error is the same for all passbands. Note that the frame-by-frame derived ZP from 2MASS automatically corrects for extinction variations, assuming they are uniform across the field of view.
extinctionExt MultiframeDetector VMCv20140903 Extinction coefficient of the detector {image extension keyword: EXTINCT} real 4 mags -0.9999995e9 ??
These are currently set to a constant clear night level, which within the current measuring error is the same for all passbands. Note that the frame-by-frame derived ZP from 2MASS automatically corrects for extinction variations, assuming they are uniform across the field of view.
extinctionExt MultiframeDetector VMCv20150309 Extinction coefficient of the detector {image extension keyword: EXTINCT} real 4 mags -0.9999995e9 ??
These are currently set to a constant clear night level, which within the current measuring error is the same for all passbands. Note that the frame-by-frame derived ZP from 2MASS automatically corrects for extinction variations, assuming they are uniform across the field of view.
extinctionExt MultiframeDetector VMCv20151218 Extinction coefficient of the detector {image extension keyword: EXTINCT} real 4 mags -0.9999995e9 ??
These are currently set to a constant clear night level, which within the current measuring error is the same for all passbands. Note that the frame-by-frame derived ZP from 2MASS automatically corrects for extinction variations, assuming they are uniform across the field of view.
extinctionExt MultiframeDetector VMCv20160311 Extinction coefficient of the detector {image extension keyword: EXTINCT} real 4 mags -0.9999995e9 ??
These are currently set to a constant clear night level, which within the current measuring error is the same for all passbands. Note that the frame-by-frame derived ZP from 2MASS automatically corrects for extinction variations, assuming they are uniform across the field of view.
extinctionExt MultiframeDetector VMCv20160822 Extinction coefficient of the detector {image extension keyword: EXTINCT} real 4 mags -0.9999995e9 ??
These are currently set to a constant clear night level, which within the current measuring error is the same for all passbands. Note that the frame-by-frame derived ZP from 2MASS automatically corrects for extinction variations, assuming they are uniform across the field of view.
extinctionExt MultiframeDetector VMCv20170109 Extinction coefficient of the detector {image extension keyword: EXTINCT} real 4 mags -0.9999995e9 ??
These are currently set to a constant clear night level, which within the current measuring error is the same for all passbands. Note that the frame-by-frame derived ZP from 2MASS automatically corrects for extinction variations, assuming they are uniform across the field of view.
extinctionExt MultiframeDetector VMCv20170411 Extinction coefficient of the detector {image extension keyword: EXTINCT} real 4 mags -0.9999995e9 ??
These are currently set to a constant clear night level, which within the current measuring error is the same for all passbands. Note that the frame-by-frame derived ZP from 2MASS automatically corrects for extinction variations, assuming they are uniform across the field of view.
extinctionExt MultiframeDetector VMCv20171101 Extinction coefficient of the detector {image extension keyword: EXTINCT} real 4 mags -0.9999995e9 ??
These are currently set to a constant clear night level, which within the current measuring error is the same for all passbands. Note that the frame-by-frame derived ZP from 2MASS automatically corrects for extinction variations, assuming they are uniform across the field of view.
extinctionExt MultiframeDetector VMCv20180702 Extinction coefficient of the detector {image extension keyword: EXTINCT} real 4 mags -0.9999995e9 ??
These are currently set to a constant clear night level, which within the current measuring error is the same for all passbands. Note that the frame-by-frame derived ZP from 2MASS automatically corrects for extinction variations, assuming they are uniform across the field of view.
extinctionExt MultiframeDetector VMCv20181120 Extinction coefficient of the detector {image extension keyword: EXTINCT} real 4 mags -0.9999995e9 ??
These are currently set to a constant clear night level, which within the current measuring error is the same for all passbands. Note that the frame-by-frame derived ZP from 2MASS automatically corrects for extinction variations, assuming they are uniform across the field of view.
extinctionExt MultiframeDetector VVVDR4 Extinction coefficient of the detector {image extension keyword: EXTINCT} real 4 mags -0.9999995e9 ??
These are currently set to a constant clear night level, which within the current measuring error is the same for all passbands. Note that the frame-by-frame derived ZP from 2MASS automatically corrects for extinction variations, assuming they are uniform across the field of view.
extinctionExt ultravistaMultiframeDetector, vhsMultiframeDetector, videoMultiframeDetector, vikingMultiframeDetector, vmcMultiframeDetector, vvvMultiframeDetector VSAQC Extinction coefficient of the detector real 4 mags -0.9999995e9 ??
extinctionMapList Programme VHSDR4 A list of 3D extinction maps that should be matched to this survey varchar 32   NONE meta.id
extinctionMapList Programme VHSv20160114 A list of 3D extinction maps that should be matched to this survey varchar 32   NONE meta.id
extinctionMapList Programme VHSv20160507 A list of 3D extinction maps that should be matched to this survey varchar 32   NONE meta.id
extinctionMapList Programme VHSv20170630 A list of 3D extinction maps that should be matched to this survey varchar 32   NONE meta.id
extinctionMapList Programme VHSv20171207 A list of 3D extinction maps that should be matched to this survey varchar 32   NONE meta.id
extinctionMapList Programme VHSv20180419 A list of 3D extinction maps that should be matched to this survey varchar 32   NONE meta.id
extinctionMapList Programme VIDEODR5 A list of 3D extinction maps that should be matched to this survey varchar 32   NONE meta.id
extinctionMapList Programme VIKINGv20150421 A list of 3D extinction maps that should be matched to this survey varchar 32   NONE meta.id
extinctionMapList Programme VIKINGv20151230 A list of 3D extinction maps that should be matched to this survey varchar 32   NONE meta.id
extinctionMapList Programme VIKINGv20160406 A list of 3D extinction maps that should be matched to this survey varchar 32   NONE meta.id
extinctionMapList Programme VIKINGv20161202 A list of 3D extinction maps that should be matched to this survey varchar 32   NONE meta.id
extinctionMapList Programme VIKINGv20170715 A list of 3D extinction maps that should be matched to this survey varchar 32   NONE meta.id
extinctionMapList Programme VIKINGv20181012 A list of 3D extinction maps that should be matched to this survey varchar 32   NONE meta.id
extinctionMapList Programme VMCDR4 A list of 3D extinction maps that should be matched to this survey varchar 32   NONE meta.id
extinctionMapList Programme VMCv20150309 A list of 3D extinction maps that should be matched to this survey varchar 32   NONE meta.id
extinctionMapList Programme VMCv20151218 A list of 3D extinction maps that should be matched to this survey varchar 32   NONE meta.id
extinctionMapList Programme VMCv20160311 A list of 3D extinction maps that should be matched to this survey varchar 32   NONE meta.id
extinctionMapList Programme VMCv20160822 A list of 3D extinction maps that should be matched to this survey varchar 32   NONE meta.id
extinctionMapList Programme VMCv20170109 A list of 3D extinction maps that should be matched to this survey varchar 32   NONE meta.id
extinctionMapList Programme VMCv20170411 A list of 3D extinction maps that should be matched to this survey varchar 32   NONE meta.id
extinctionMapList Programme VMCv20171101 A list of 3D extinction maps that should be matched to this survey varchar 32   NONE meta.id
extinctionMapList Programme VMCv20180702 A list of 3D extinction maps that should be matched to this survey varchar 32   NONE meta.id
extinctionMapList Programme VMCv20181120 A list of 3D extinction maps that should be matched to this survey varchar 32   NONE meta.id
extinctionMapList Programme VSAQC A list of 3D extinction maps that should be matched to this survey varchar 32   NONE meta.id
extinctionMapList Programme VVVDR4 A list of 3D extinction maps that should be matched to this survey varchar 32   NONE meta.id
extl rosat_bsc, rosat_fsc ROSAT likelihood of source extent smallint 2     stat.likelihood
extMapID vvvSourceExtinction VVVDR4 UID of 3D extinction map used tinyint 1   0  
extNum CurrentAstrometry VHSDR2 the extension number of this frame tinyint 1   0 meta.number
extNum CurrentAstrometry VHSDR3 the extension number of this frame tinyint 1   0 meta.number
extNum CurrentAstrometry VHSDR4 the extension number of this frame tinyint 1   0 meta.number
extNum CurrentAstrometry VHSv20120926 the extension number of this frame tinyint 1   0 meta.number
extNum CurrentAstrometry VHSv20130417 the extension number of this frame tinyint 1   0 meta.number
extNum CurrentAstrometry VHSv20140409 the extension number of this frame tinyint 1   0 meta.number
extNum CurrentAstrometry VHSv20150108 the extension number of this frame tinyint 1   0 meta.number
extNum CurrentAstrometry VHSv20160114 the extension number of this frame tinyint 1   0 meta.number
extNum CurrentAstrometry VHSv20160507 the extension number of this frame tinyint 1   0 meta.number
extNum CurrentAstrometry VHSv20170630 the extension number of this frame tinyint 1   0 meta.number
extNum CurrentAstrometry VHSv20171207 the extension number of this frame tinyint 1   0 meta.number
extNum CurrentAstrometry VIDEODR2 the extension number of this frame tinyint 1   0 meta.number
extNum CurrentAstrometry VIDEODR3 the extension number of this frame tinyint 1   0 meta.number
extNum CurrentAstrometry VIDEODR4 the extension number of this frame tinyint 1   0 meta.number
extNum CurrentAstrometry VIDEODR5 the extension number of this frame tinyint 1   0 meta.number
extNum CurrentAstrometry VIDEOv20100513 the extension number of this frame tinyint 1   0 meta.number
extNum CurrentAstrometry VIDEOv20111208 the extension number of this frame tinyint 1   0 meta.number
extNum CurrentAstrometry VIKINGDR2 the extension number of this frame tinyint 1   0 meta.number
extNum CurrentAstrometry VIKINGDR3 the extension number of this frame tinyint 1   0 meta.number
extNum CurrentAstrometry VIKINGDR4 the extension number of this frame tinyint 1   0 meta.number
extNum CurrentAstrometry VIKINGv20110714 the extension number of this frame tinyint 1   0 meta.number
extNum CurrentAstrometry VIKINGv20111019 the extension number of this frame tinyint 1   0 meta.number
extNum CurrentAstrometry VIKINGv20130417 the extension number of this frame tinyint 1   0 meta.number
extNum CurrentAstrometry VIKINGv20140402 the extension number of this frame tinyint 1   0 meta.number
extNum CurrentAstrometry VIKINGv20150421 the extension number of this frame tinyint 1   0 meta.number
extNum CurrentAstrometry VIKINGv20151230 the extension number of this frame tinyint 1   0 meta.number
extNum CurrentAstrometry VIKINGv20160406 the extension number of this frame tinyint 1   0 meta.number
extNum CurrentAstrometry VIKINGv20161202 the extension number of this frame tinyint 1   0 meta.number
extNum CurrentAstrometry VIKINGv20170715 the extension number of this frame tinyint 1   0 meta.number
extNum CurrentAstrometry VIKINGv20181012 the extension number of this frame tinyint 1   0 meta.number
extNum CurrentAstrometry VMCDR1 the extension number of this frame tinyint 1   0 meta.number
extNum CurrentAstrometry VMCDR2 the extension number of this frame tinyint 1   0 meta.number
extNum CurrentAstrometry VMCDR3 the extension number of this frame tinyint 1   0 meta.number
extNum CurrentAstrometry VMCDR4 the extension number of this frame tinyint 1   0 meta.number
extNum CurrentAstrometry VMCv20110816 the extension number of this frame tinyint 1   0 meta.number
extNum CurrentAstrometry VMCv20110909 the extension number of this frame tinyint 1   0 meta.number
extNum CurrentAstrometry VMCv20120126 the extension number of this frame tinyint 1   0 meta.number
extNum CurrentAstrometry VMCv20121128 the extension number of this frame tinyint 1   0 meta.number
extNum CurrentAstrometry VMCv20130304 the extension number of this frame tinyint 1   0 meta.number
extNum CurrentAstrometry VMCv20130805 the extension number of this frame tinyint 1   0 meta.number
extNum CurrentAstrometry VMCv20140428 the extension number of this frame tinyint 1   0 meta.number
extNum CurrentAstrometry VMCv20140903 the extension number of this frame tinyint 1   0 meta.number
extNum CurrentAstrometry VMCv20150309 the extension number of this frame tinyint 1   0 meta.number
extNum CurrentAstrometry VMCv20151218 the extension number of this frame tinyint 1   0 meta.number
extNum CurrentAstrometry VMCv20160311 the extension number of this frame tinyint 1   0 meta.number
extNum CurrentAstrometry VMCv20160822 the extension number of this frame tinyint 1   0 meta.number
extNum CurrentAstrometry VMCv20170109 the extension number of this frame tinyint 1   0 meta.number
extNum CurrentAstrometry VMCv20170411 the extension number of this frame tinyint 1   0 meta.number
extNum CurrentAstrometry VMCv20171101 the extension number of this frame tinyint 1   0 meta.number
extNum CurrentAstrometry VMCv20180702 the extension number of this frame tinyint 1   0 meta.number
extNum CurrentAstrometry VMCv20181120 the extension number of this frame tinyint 1   0 meta.number
extNum CurrentAstrometry VVVDR4 the extension number of this frame tinyint 1   0 meta.number
extNum CurrentAstrometry, EpochFrameStatus VHSv20180419 the extension number of this frame tinyint 1   0 meta.number
extNum CurrentAstrometry, MultiframeDetector, MultiframeDetectorEsoKeys VHSDR1 the extension number of this frame tinyint 1   0 meta.number
extNum PreviousMFDZP VHSDR2 the extension number of this frame tinyint 1     meta.number
extNum PreviousMFDZP VHSDR3 the extension number of this frame tinyint 1     meta.number
extNum PreviousMFDZP VHSDR4 the extension number of this frame tinyint 1     meta.number
extNum PreviousMFDZP VHSv20120926 the extension number of this frame tinyint 1     meta.number
extNum PreviousMFDZP VHSv20130417 the extension number of this frame tinyint 1     meta.number
extNum PreviousMFDZP VHSv20140409 the extension number of this frame tinyint 1     meta.number
extNum PreviousMFDZP VHSv20150108 the extension number of this frame tinyint 1     meta.number
extNum PreviousMFDZP VHSv20160114 the extension number of this frame tinyint 1     meta.number
extNum PreviousMFDZP VHSv20160507 the extension number of this frame tinyint 1     meta.number
extNum PreviousMFDZP VHSv20171207 the extension number of this frame tinyint 1     meta.number
extNum PreviousMFDZP VHSv20180419 the extension number of this frame tinyint 1     meta.number
extNum PreviousMFDZP VIDEODR3 the extension number of this frame tinyint 1     meta.number
extNum PreviousMFDZP VIDEODR4 the extension number of this frame tinyint 1     meta.number
extNum PreviousMFDZP VIDEODR5 the extension number of this frame tinyint 1     meta.number
extNum PreviousMFDZP VIDEOv20111208 the extension number of this frame tinyint 1     meta.number
extNum PreviousMFDZP VIKINGDR3 the extension number of this frame tinyint 1     meta.number
extNum PreviousMFDZP VIKINGDR4 the extension number of this frame tinyint 1     meta.number
extNum PreviousMFDZP VIKINGv20111019 the extension number of this frame tinyint 1     meta.number
extNum PreviousMFDZP VIKINGv20130417 the extension number of this frame tinyint 1     meta.number
extNum PreviousMFDZP VIKINGv20140402 the extension number of this frame tinyint 1     meta.number
extNum PreviousMFDZP VIKINGv20150421 the extension number of this frame tinyint 1     meta.number
extNum PreviousMFDZP VIKINGv20151230 the extension number of this frame tinyint 1     meta.number
extNum PreviousMFDZP VIKINGv20160406 the extension number of this frame tinyint 1     meta.number
extNum PreviousMFDZP VIKINGv20161202 the extension number of this frame tinyint 1     meta.number
extNum PreviousMFDZP VIKINGv20170715 the extension number of this frame tinyint 1     meta.number
extNum PreviousMFDZP VIKINGv20181012 the extension number of this frame tinyint 1     meta.number
extNum PreviousMFDZP VMCDR2 the extension number of this frame tinyint 1     meta.number
extNum PreviousMFDZP VMCDR3 the extension number of this frame tinyint 1     meta.number
extNum PreviousMFDZP VMCDR4 the extension number of this frame tinyint 1     meta.number
extNum PreviousMFDZP VMCv20110909 the extension number of this frame tinyint 1     meta.number
extNum PreviousMFDZP VMCv20120126 the extension number of this frame tinyint 1     meta.number
extNum PreviousMFDZP VMCv20121128 the extension number of this frame tinyint 1     meta.number
extNum PreviousMFDZP VMCv20130304 the extension number of this frame tinyint 1     meta.number
extNum PreviousMFDZP VMCv20130805 the extension number of this frame tinyint 1     meta.number
extNum PreviousMFDZP VMCv20140428 the extension number of this frame tinyint 1     meta.number
extNum PreviousMFDZP VMCv20140903 the extension number of this frame tinyint 1     meta.number
extNum PreviousMFDZP VMCv20150309 the extension number of this frame tinyint 1     meta.number
extNum PreviousMFDZP VMCv20151218 the extension number of this frame tinyint 1     meta.number
extNum PreviousMFDZP VMCv20160311 the extension number of this frame tinyint 1     meta.number
extNum PreviousMFDZP VMCv20160822 the extension number of this frame tinyint 1     meta.number
extNum PreviousMFDZP VMCv20170109 the extension number of this frame tinyint 1     meta.number
extNum PreviousMFDZP VMCv20170411 the extension number of this frame tinyint 1     meta.number
extNum PreviousMFDZP VMCv20171101 the extension number of this frame tinyint 1     meta.number
extNum PreviousMFDZP VMCv20180702 the extension number of this frame tinyint 1     meta.number
extNum PreviousMFDZP VMCv20181120 the extension number of this frame tinyint 1     meta.number
extNum PreviousMFDZP, vhsAstrometricInfo VHSv20170630 the extension number of this frame tinyint 1     meta.number
extNum PreviousMFDZP, vhsDetection, vhsListRemeasurement VHSDR1 the extension number of this frame tinyint 1     meta.number
extNum PreviousMFDZP, videoAstrometricInfo, videoDetection, videoSourceXDetectionBestMatch VIDEODR2 the extension number of this frame tinyint 1     meta.number
extNum PreviousMFDZP, videoListRemeasurement VIDEOv20100513 the extension number of this frame tinyint 1     meta.number
extNum PreviousMFDZP, vikingAstrometricInfo, vikingDetection, vikingSourceXDetectionBestMatch VIKINGDR2 the extension number of this frame tinyint 1     meta.number
extNum PreviousMFDZP, vikingListRemeasurement VIKINGv20110714 the extension number of this frame tinyint 1     meta.number
extNum PreviousMFDZP, vmcAstrometricInfo, vmcDetection VMCDR1 the extension number of this frame tinyint 1     meta.number
extNum PreviousMFDZP, vmcListRemeasurement VMCv20110816 the extension number of this frame tinyint 1     meta.number
extNum PreviousMFDZP, vvvAstrometricInfo, vvvDetection, vvvSourceXDetectionBestMatch VVVDR4 the extension number of this frame tinyint 1     meta.number
extNum ultravistaCurrentAstrometry, ultravistaMultiframeDetector, vhsCurrentAstrometry, vhsMultiframeDetector, videoCurrentAstrometry, videoMultiframeDetector, vikingCurrentAstrometry, vikingMultiframeDetector, vmcCurrentAstrometry, vmcMultiframeDetector, vvvCurrentAstrometry, vvvMultiframeDetector VSAQC the extension number of this frame tinyint 1   meta.number
extNum vikingMapRemeasAver VIKINGZYSELJv20170124 the extension number of this frame tinyint 1     meta.number
extNum vikingMapRemeasAver, vikingMapRemeasurement VIKINGZYSELJv20160909 the extension number of this frame tinyint 1     meta.number
extPixelID vvvSourceExtinction VVVDR4 Pixel ID from 3D extinction map that matches source position int 4   -99999999  
extProgID RequiredNeighbours VHSDR1 the unique programme ID for second table if there are multiple programmes in the neighbour survey int 4   -99999999 meta.id
extProgID RequiredNeighbours VHSDR2 the unique programme ID for second table if there are multiple programmes in the neighbour survey int 4   -99999999 meta.id
extProgID RequiredNeighbours VHSDR3 the unique programme ID for second table if there are multiple programmes in the neighbour survey int 4   -99999999 meta.id
extProgID RequiredNeighbours VHSDR4 the unique programme ID for second table if there are multiple programmes in the neighbour survey int 4   -99999999 meta.id
extProgID RequiredNeighbours VHSv20120926 the unique programme ID for second table if there are multiple programmes in the neighbour survey int 4   -99999999 meta.id
extProgID RequiredNeighbours VHSv20130417 the unique programme ID for second table if there are multiple programmes in the neighbour survey int 4   -99999999 meta.id
extProgID RequiredNeighbours VHSv20150108 the unique programme ID for second table if there are multiple programmes in the neighbour survey int 4   -99999999 meta.id
extProgID RequiredNeighbours VHSv20160114 the unique programme ID for second table if there are multiple programmes in the neighbour survey int 4   -99999999 meta.id
extProgID RequiredNeighbours VHSv20160507 the unique programme ID for second table if there are multiple programmes in the neighbour survey int 4   -99999999 meta.id
extProgID RequiredNeighbours VHSv20170630 the unique programme ID for second table if there are multiple programmes in the neighbour survey int 4   -99999999 meta.id
extProgID RequiredNeighbours VHSv20171207 the unique programme ID for second table if there are multiple programmes in the neighbour survey int 4   -99999999 meta.id
extProgID RequiredNeighbours VHSv20180419 the unique programme ID for second table if there are multiple programmes in the neighbour survey int 4   -99999999 meta.id
extProgID RequiredNeighbours VIDEODR2 the unique programme ID for second table if there are multiple programmes in the neighbour survey int 4   -99999999 meta.id
extProgID RequiredNeighbours VIDEODR3 the unique programme ID for second table if there are multiple programmes in the neighbour survey int 4   -99999999 meta.id
extProgID RequiredNeighbours VIDEODR4 the unique programme ID for second table if there are multiple programmes in the neighbour survey int 4   -99999999 meta.id
extProgID RequiredNeighbours VIDEODR5 the unique programme ID for second table if there are multiple programmes in the neighbour survey int 4   -99999999 meta.id
extProgID RequiredNeighbours VIDEOv20100513 the unique programme ID for second table if there are multiple programmes in the neighbour survey int 4   -99999999 meta.id
extProgID RequiredNeighbours VIDEOv20111208 the unique programme ID for second table if there are multiple programmes in the neighbour survey int 4   -99999999 meta.id
extProgID RequiredNeighbours VIKINGDR2 the unique programme ID for second table if there are multiple programmes in the neighbour survey int 4   -99999999 meta.id
extProgID RequiredNeighbours VIKINGDR3 the unique programme ID for second table if there are multiple programmes in the neighbour survey int 4   -99999999 meta.id
extProgID RequiredNeighbours VIKINGDR4 the unique programme ID for second table if there are multiple programmes in the neighbour survey int 4   -99999999 meta.id
extProgID RequiredNeighbours VIKINGv20110714 the unique programme ID for second table if there are multiple programmes in the neighbour survey int 4   -99999999 meta.id
extProgID RequiredNeighbours VIKINGv20111019 the unique programme ID for second table if there are multiple programmes in the neighbour survey int 4   -99999999 meta.id
extProgID RequiredNeighbours VIKINGv20130417 the unique programme ID for second table if there are multiple programmes in the neighbour survey int 4   -99999999 meta.id
extProgID RequiredNeighbours VIKINGv20150421 the unique programme ID for second table if there are multiple programmes in the neighbour survey int 4   -99999999 meta.id
extProgID RequiredNeighbours VIKINGv20151230 the unique programme ID for second table if there are multiple programmes in the neighbour survey int 4   -99999999 meta.id
extProgID RequiredNeighbours VIKINGv20160406 the unique programme ID for second table if there are multiple programmes in the neighbour survey int 4   -99999999 meta.id
extProgID RequiredNeighbours VIKINGv20161202 the unique programme ID for second table if there are multiple programmes in the neighbour survey int 4   -99999999 meta.id
extProgID RequiredNeighbours VIKINGv20170715 the unique programme ID for second table if there are multiple programmes in the neighbour survey int 4   -99999999 meta.id
extProgID RequiredNeighbours VIKINGv20181012 the unique programme ID for second table if there are multiple programmes in the neighbour survey int 4   -99999999 meta.id
extProgID RequiredNeighbours VMCDR1 the unique programme ID for second table if there are multiple programmes in the neighbour survey int 4   -99999999 meta.id
extProgID RequiredNeighbours VMCDR3 the unique programme ID for second table if there are multiple programmes in the neighbour survey int 4   -99999999 meta.id
extProgID RequiredNeighbours VMCDR4 the unique programme ID for second table if there are multiple programmes in the neighbour survey int 4   -99999999 meta.id
extProgID RequiredNeighbours VMCv20110816 the unique programme ID for second table if there are multiple programmes in the neighbour survey int 4   -99999999 meta.id
extProgID RequiredNeighbours VMCv20110909 the unique programme ID for second table if there are multiple programmes in the neighbour survey int 4   -99999999 meta.id
extProgID RequiredNeighbours VMCv20120126 the unique programme ID for second table if there are multiple programmes in the neighbour survey int 4   -99999999 meta.id
extProgID RequiredNeighbours VMCv20121128 the unique programme ID for second table if there are multiple programmes in the neighbour survey int 4   -99999999 meta.id
extProgID RequiredNeighbours VMCv20130304 the unique programme ID for second table if there are multiple programmes in the neighbour survey int 4   -99999999 meta.id
extProgID RequiredNeighbours VMCv20130805 the unique programme ID for second table if there are multiple programmes in the neighbour survey int 4   -99999999 meta.id
extProgID RequiredNeighbours VMCv20140428 the unique programme ID for second table if there are multiple programmes in the neighbour survey int 4   -99999999 meta.id
extProgID RequiredNeighbours VMCv20140903 the unique programme ID for second table if there are multiple programmes in the neighbour survey int 4   -99999999 meta.id
extProgID RequiredNeighbours VMCv20150309 the unique programme ID for second table if there are multiple programmes in the neighbour survey int 4   -99999999 meta.id
extProgID RequiredNeighbours VMCv20151218 the unique programme ID for second table if there are multiple programmes in the neighbour survey int 4   -99999999 meta.id
extProgID RequiredNeighbours VMCv20160311 the unique programme ID for second table if there are multiple programmes in the neighbour survey int 4   -99999999 meta.id
extProgID RequiredNeighbours VMCv20160822 the unique programme ID for second table if there are multiple programmes in the neighbour survey int 4   -99999999 meta.id
extProgID RequiredNeighbours VMCv20170109 the unique programme ID for second table if there are multiple programmes in the neighbour survey int 4   -99999999 meta.id
extProgID RequiredNeighbours VMCv20170411 the unique programme ID for second table if there are multiple programmes in the neighbour survey int 4   -99999999 meta.id
extProgID RequiredNeighbours VMCv20171101 the unique programme ID for second table if there are multiple programmes in the neighbour survey int 4   -99999999 meta.id
extProgID RequiredNeighbours VMCv20180702 the unique programme ID for second table if there are multiple programmes in the neighbour survey int 4   -99999999 meta.id
extProgID RequiredNeighbours VMCv20181120 the unique programme ID for second table if there are multiple programmes in the neighbour survey int 4   -99999999 meta.id
extProgID RequiredNeighbours VSAQC the unique programme ID for second table if there are multiple programmes in the neighbour survey int 4   -99999999 meta.id
extProgID RequiredNeighbours VVVDR4 the unique programme ID for second table if there are multiple programmes in the neighbour survey int 4   -99999999 meta.id
extr rosat_bsc, rosat_fsc ROSAT extraction radius smallint 2 arcsec   stat.fit.param
extractor RequiredListDrivenProduct VHSv20120926 CASU list driven or SExtractor dual image mode varchar 16   'NONE'  
extractor RequiredListDrivenProduct VHSv20130417 CASU list driven or SExtractor dual image mode varchar 16   NONE  
extractor RequiredListDrivenProduct VIDEODR3 CASU list driven or SExtractor dual image mode varchar 16   'NONE'  
extractor RequiredListDrivenProduct VIKINGDR3 CASU list driven or SExtractor dual image mode varchar 16   'NONE'  
extractor RequiredListDrivenProduct VIKINGv20130417 CASU list driven or SExtractor dual image mode varchar 16   NONE  
extractor RequiredListDrivenProduct VMCv20121128 CASU list driven or SExtractor dual image mode varchar 16   'NONE'  
extractor RequiredListDrivenProduct VMCv20130304 CASU list driven or SExtractor dual image mode varchar 16   'NONE'  
extractor RequiredListDrivenProduct VMCv20130805 CASU list driven or SExtractor dual image mode varchar 16   NONE  
extractTool Programme VHSDR1 Name of extraction tool to be used varchar 8   NONE ??
extractTool Programme VHSDR2 Name of extraction tool to be used varchar 8   NONE ??
extractTool Programme VHSDR3 Name of extraction tool to be used varchar 8   NONE ??
extractTool Programme VHSDR4 Name of extraction tool to be used varchar 8   NONE ??
extractTool Programme VHSv20120926 Name of extraction tool to be used varchar 8   NONE ??
extractTool Programme VHSv20130417 Name of extraction tool to be used varchar 8   NONE ??
extractTool Programme VHSv20150108 Name of extraction tool to be used varchar 8   NONE ??
extractTool Programme VHSv20160114 Name of extraction tool to be used varchar 8   NONE ??
extractTool Programme VHSv20160507 Name of extraction tool to be used varchar 8   NONE ??
extractTool Programme VHSv20170630 Name of extraction tool to be used varchar 8   NONE ??
extractTool Programme VHSv20171207 Name of extraction tool to be used varchar 8   NONE ??
extractTool Programme VHSv20180419 Name of extraction tool to be used varchar 8   NONE ??
extractTool Programme VIDEODR2 Name of extraction tool to be used varchar 8   NONE ??
extractTool Programme VIDEODR3 Name of extraction tool to be used varchar 8   NONE ??
extractTool Programme VIDEODR4 Name of extraction tool to be used varchar 8   NONE ??
extractTool Programme VIDEODR5 Name of extraction tool to be used varchar 8   NONE ??
extractTool Programme VIDEOv20100513 Name of extraction tool to be used varchar 8   NONE ??
extractTool Programme VIDEOv20111208 Name of extraction tool to be used varchar 8   NONE ??
extractTool Programme VIKINGDR2 Name of extraction tool to be used varchar 8   NONE ??
extractTool Programme VIKINGDR3 Name of extraction tool to be used varchar 8   NONE ??
extractTool Programme VIKINGDR4 Name of extraction tool to be used varchar 8   NONE ??
extractTool Programme VIKINGv20110714 Name of extraction tool to be used varchar 8   NONE ??
extractTool Programme VIKINGv20111019 Name of extraction tool to be used varchar 8   NONE ??
extractTool Programme VIKINGv20130417 Name of extraction tool to be used varchar 8   NONE ??
extractTool Programme VIKINGv20150421 Name of extraction tool to be used varchar 8   NONE ??
extractTool Programme VIKINGv20151230 Name of extraction tool to be used varchar 8   NONE ??
extractTool Programme VIKINGv20160406 Name of extraction tool to be used varchar 8   NONE ??
extractTool Programme VIKINGv20161202 Name of extraction tool to be used varchar 8   NONE ??
extractTool Programme VIKINGv20170715 Name of extraction tool to be used varchar 8   NONE ??
extractTool Programme VIKINGv20181012 Name of extraction tool to be used varchar 8   NONE ??
extractTool Programme VMCDR1 Name of extraction tool to be used varchar 8   NONE ??
extractTool Programme VMCDR3 Name of extraction tool to be used varchar 8   NONE ??
extractTool Programme VMCDR4 Name of extraction tool to be used varchar 8   NONE ??
extractTool Programme VMCv20110816 Name of extraction tool to be used varchar 8   NONE ??
extractTool Programme VMCv20110909 Name of extraction tool to be used varchar 8   NONE ??
extractTool Programme VMCv20120126 Name of extraction tool to be used varchar 8   NONE ??
extractTool Programme VMCv20121128 Name of extraction tool to be used varchar 8   NONE ??
extractTool Programme VMCv20130304 Name of extraction tool to be used varchar 8   NONE ??
extractTool Programme VMCv20130805 Name of extraction tool to be used varchar 8   NONE ??
extractTool Programme VMCv20140428 Name of extraction tool to be used varchar 8   NONE ??
extractTool Programme VMCv20140903 Name of extraction tool to be used varchar 8   NONE ??
extractTool Programme VMCv20150309 Name of extraction tool to be used varchar 8   NONE ??
extractTool Programme VMCv20151218 Name of extraction tool to be used varchar 8   NONE ??
extractTool Programme VMCv20160311 Name of extraction tool to be used varchar 8   NONE ??
extractTool Programme VMCv20160822 Name of extraction tool to be used varchar 8   NONE ??
extractTool Programme VMCv20170109 Name of extraction tool to be used varchar 8   NONE ??
extractTool Programme VMCv20170411 Name of extraction tool to be used varchar 8   NONE ??
extractTool Programme VMCv20171101 Name of extraction tool to be used varchar 8   NONE ??
extractTool Programme VMCv20180702 Name of extraction tool to be used varchar 8   NONE ??
extractTool Programme VMCv20181120 Name of extraction tool to be used varchar 8   NONE ??
extractTool Programme VSAQC Name of extraction tool to be used varchar 8   NONE ??
extractTool Programme VVVDR4 Name of extraction tool to be used varchar 8   NONE ??
extTableID ExternalSurveyTable VHSDR2 the unique table ID int 4     meta.id;meta.main
extTableID ExternalSurveyTable VHSDR3 the unique table ID int 4     meta.id;meta.main
extTableID ExternalSurveyTable VHSDR4 the unique table ID int 4     meta.id;meta.main
extTableID ExternalSurveyTable VHSv20120926 the unique table ID int 4     meta.id;meta.main
extTableID ExternalSurveyTable VHSv20130417 the unique table ID int 4     meta.id;meta.main
extTableID ExternalSurveyTable VHSv20150108 the unique table ID int 4     meta.id;meta.main
extTableID ExternalSurveyTable VHSv20160114 the unique table ID int 4     meta.id;meta.main
extTableID ExternalSurveyTable VHSv20160507 the unique table ID int 4     meta.id;meta.main
extTableID ExternalSurveyTable VHSv20170630 the unique table ID int 4     meta.id;meta.main
extTableID ExternalSurveyTable VHSv20171207 the unique table ID int 4     meta.id;meta.main
extTableID ExternalSurveyTable VHSv20180419 the unique table ID int 4     meta.id;meta.main
extTableID ExternalSurveyTable VIDEODR2 the unique table ID int 4     meta.id;meta.main
extTableID ExternalSurveyTable VIDEODR3 the unique table ID int 4     meta.id;meta.main
extTableID ExternalSurveyTable VIDEODR4 the unique table ID int 4     meta.id;meta.main
extTableID ExternalSurveyTable VIDEODR5 the unique table ID int 4     meta.id;meta.main
extTableID ExternalSurveyTable VIDEOv20100513 the unique table ID int 4     meta.id;meta.main
extTableID ExternalSurveyTable VIDEOv20111208 the unique table ID int 4     meta.id;meta.main
extTableID ExternalSurveyTable VIKINGDR2 the unique table ID int 4     meta.id;meta.main
extTableID ExternalSurveyTable VIKINGDR3 the unique table ID int 4     meta.id;meta.main
extTableID ExternalSurveyTable VIKINGDR4 the unique table ID int 4     meta.id;meta.main
extTableID ExternalSurveyTable VIKINGv20110714 the unique table ID int 4     meta.id;meta.main
extTableID ExternalSurveyTable VIKINGv20111019 the unique table ID int 4     meta.id;meta.main
extTableID ExternalSurveyTable VIKINGv20130417 the unique table ID int 4     meta.id;meta.main
extTableID ExternalSurveyTable VIKINGv20150421 the unique table ID int 4     meta.id;meta.main
extTableID ExternalSurveyTable VIKINGv20151230 the unique table ID int 4     meta.id;meta.main
extTableID ExternalSurveyTable VIKINGv20160406 the unique table ID int 4     meta.id;meta.main
extTableID ExternalSurveyTable VIKINGv20161202 the unique table ID int 4     meta.id;meta.main
extTableID ExternalSurveyTable VIKINGv20170715 the unique table ID int 4     meta.id;meta.main
extTableID ExternalSurveyTable VIKINGv20181012 the unique table ID int 4     meta.id;meta.main
extTableID ExternalSurveyTable VMCDR1 the unique table ID int 4     meta.id;meta.main
extTableID ExternalSurveyTable VMCDR3 the unique table ID int 4     meta.id;meta.main
extTableID ExternalSurveyTable VMCDR4 the unique table ID int 4     meta.id;meta.main
extTableID ExternalSurveyTable VMCv20110816 the unique table ID int 4     meta.id;meta.main
extTableID ExternalSurveyTable VMCv20110909 the unique table ID int 4     meta.id;meta.main
extTableID ExternalSurveyTable VMCv20120126 the unique table ID int 4     meta.id;meta.main
extTableID ExternalSurveyTable VMCv20121128 the unique table ID int 4     meta.id;meta.main
extTableID ExternalSurveyTable VMCv20130304 the unique table ID int 4     meta.id;meta.main
extTableID ExternalSurveyTable VMCv20130805 the unique table ID int 4     meta.id;meta.main
extTableID ExternalSurveyTable VMCv20140428 the unique table ID int 4     meta.id;meta.main
extTableID ExternalSurveyTable VMCv20140903 the unique table ID int 4     meta.id;meta.main
extTableID ExternalSurveyTable VMCv20150309 the unique table ID int 4     meta.id;meta.main
extTableID ExternalSurveyTable VMCv20151218 the unique table ID int 4     meta.id;meta.main
extTableID ExternalSurveyTable VMCv20160311 the unique table ID int 4     meta.id;meta.main
extTableID ExternalSurveyTable VMCv20160822 the unique table ID int 4     meta.id;meta.main
extTableID ExternalSurveyTable VMCv20170109 the unique table ID int 4     meta.id;meta.main
extTableID ExternalSurveyTable VMCv20170411 the unique table ID int 4     meta.id;meta.main
extTableID ExternalSurveyTable VMCv20171101 the unique table ID int 4     meta.id;meta.main
extTableID ExternalSurveyTable VMCv20180702 the unique table ID int 4     meta.id;meta.main
extTableID ExternalSurveyTable VMCv20181120 the unique table ID int 4     meta.id;meta.main
extTableID ExternalSurveyTable VSAQC the unique table ID int 4     meta.id;meta.main
extTableID ExternalSurveyTable VVVDR4 the unique table ID int 4     meta.id;meta.main
extTableID ExternalSurveyTable, RequiredNeighbours VHSDR1 the unique table ID int 4     meta.id;meta.main
extTableName ExternalSurveyTable VHSDR1 the name of the table varchar 256     meta.id;meta.dataset
extTableName ExternalSurveyTable VHSDR2 the name of the table varchar 256     meta.id;meta.dataset
extTableName ExternalSurveyTable VHSDR3 the name of the table varchar 256     meta.id;meta.dataset
extTableName ExternalSurveyTable VHSDR4 the name of the table varchar 256     meta.id;meta.dataset
extTableName ExternalSurveyTable VHSv20120926 the name of the table varchar 256     meta.id;meta.dataset
extTableName ExternalSurveyTable VHSv20130417 the name of the table varchar 256     meta.id;meta.dataset
extTableName ExternalSurveyTable VHSv20150108 the name of the table varchar 256     meta.id;meta.dataset
extTableName ExternalSurveyTable VHSv20160114 the name of the table varchar 256     meta.id;meta.dataset
extTableName ExternalSurveyTable VHSv20160507 the name of the table varchar 256     meta.id;meta.dataset
extTableName ExternalSurveyTable VHSv20170630 the name of the table varchar 256     meta.id;meta.dataset
extTableName ExternalSurveyTable VHSv20171207 the name of the table varchar 256     meta.id;meta.dataset
extTableName ExternalSurveyTable VHSv20180419 the name of the table varchar 256     meta.id;meta.dataset
extTableName ExternalSurveyTable VIDEODR2 the name of the table varchar 256     meta.id;meta.dataset
extTableName ExternalSurveyTable VIDEODR3 the name of the table varchar 256     meta.id;meta.dataset
extTableName ExternalSurveyTable VIDEODR4 the name of the table varchar 256     meta.id;meta.dataset
extTableName ExternalSurveyTable VIDEODR5 the name of the table varchar 256     meta.id;meta.dataset
extTableName ExternalSurveyTable VIDEOv20100513 the name of the table varchar 256     meta.id;meta.dataset
extTableName ExternalSurveyTable VIDEOv20111208 the name of the table varchar 256     meta.id;meta.dataset
extTableName ExternalSurveyTable VIKINGDR2 the name of the table varchar 256     meta.id;meta.dataset
extTableName ExternalSurveyTable VIKINGDR3 the name of the table varchar 256     meta.id;meta.dataset
extTableName ExternalSurveyTable VIKINGDR4 the name of the table varchar 256     meta.id;meta.dataset
extTableName ExternalSurveyTable VIKINGv20110714 the name of the table varchar 256     meta.id;meta.dataset
extTableName ExternalSurveyTable VIKINGv20111019 the name of the table varchar 256     meta.id;meta.dataset
extTableName ExternalSurveyTable VIKINGv20130417 the name of the table varchar 256     meta.id;meta.dataset
extTableName ExternalSurveyTable VIKINGv20150421 the name of the table varchar 256     meta.id;meta.dataset
extTableName ExternalSurveyTable VIKINGv20151230 the name of the table varchar 256     meta.id;meta.dataset
extTableName ExternalSurveyTable VIKINGv20160406 the name of the table varchar 256     meta.id;meta.dataset
extTableName ExternalSurveyTable VIKINGv20161202 the name of the table varchar 256     meta.id;meta.dataset
extTableName ExternalSurveyTable VIKINGv20170715 the name of the table varchar 256     meta.id;meta.dataset
extTableName ExternalSurveyTable VIKINGv20181012 the name of the table varchar 256     meta.id;meta.dataset
extTableName ExternalSurveyTable VMCDR1 the name of the table varchar 256     meta.id;meta.dataset
extTableName ExternalSurveyTable VMCDR3 the name of the table varchar 256     meta.id;meta.dataset
extTableName ExternalSurveyTable VMCDR4 the name of the table varchar 256     meta.id;meta.dataset
extTableName ExternalSurveyTable VMCv20110816 the name of the table varchar 256     meta.id;meta.dataset
extTableName ExternalSurveyTable VMCv20110909 the name of the table varchar 256     meta.id;meta.dataset
extTableName ExternalSurveyTable VMCv20120126 the name of the table varchar 256     meta.id;meta.dataset
extTableName ExternalSurveyTable VMCv20121128 the name of the table varchar 256     meta.id;meta.dataset
extTableName ExternalSurveyTable VMCv20130304 the name of the table varchar 256     meta.id;meta.dataset
extTableName ExternalSurveyTable VMCv20130805 the name of the table varchar 256     meta.id;meta.dataset
extTableName ExternalSurveyTable VMCv20140428 the name of the table varchar 256     meta.id;meta.dataset
extTableName ExternalSurveyTable VMCv20140903 the name of the table varchar 256     meta.id;meta.dataset
extTableName ExternalSurveyTable VMCv20150309 the name of the table varchar 256     meta.id;meta.dataset
extTableName ExternalSurveyTable VMCv20151218 the name of the table varchar 256     meta.id;meta.dataset
extTableName ExternalSurveyTable VMCv20160311 the name of the table varchar 256     meta.id;meta.dataset
extTableName ExternalSurveyTable VMCv20160822 the name of the table varchar 256     meta.id;meta.dataset
extTableName ExternalSurveyTable VMCv20170109 the name of the table varchar 256     meta.id;meta.dataset
extTableName ExternalSurveyTable VMCv20170411 the name of the table varchar 256     meta.id;meta.dataset
extTableName ExternalSurveyTable VMCv20171101 the name of the table varchar 256     meta.id;meta.dataset
extTableName ExternalSurveyTable VMCv20180702 the name of the table varchar 256     meta.id;meta.dataset
extTableName ExternalSurveyTable VMCv20181120 the name of the table varchar 256     meta.id;meta.dataset
extTableName ExternalSurveyTable VSAQC the name of the table varchar 256     meta.id;meta.dataset
extTableName ExternalSurveyTable VVVDR4 the name of the table varchar 256     meta.id;meta.dataset
eYmag vvvParallaxCatalogue, vvvProperMotionCatalogue VVVDR4 Error on VVV DR4 Y photometry. {catalogue TType keyword: eYmag} real 4 mag -999999500.0  
eZmag vvvParallaxCatalogue, vvvProperMotionCatalogue VVVDR4 Error on VVV DR4 Z photometry. {catalogue TType keyword: eZmag} real 4 mag -999999500.0  



Home | Overview | Browser | Access | Login | Cookbook
Listing | FreeSQL
Links | Credits

WFAU, Institute for Astronomy,
Royal Observatory, Blackford Hill
Edinburgh, EH9 3HJ, UK

vsa-support@roe.ac.uk
20/11/2018